Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T05:05:10.620Z Has data issue: false hasContentIssue false

Fallback Disks, Magnetars and Other Neutron Stars

Published online by Cambridge University Press:  21 February 2013

M. Ali Alpar
Affiliation:
Sabancı University, İstanbul, Turkey email: alpar@sabanciuniv.edu
Ş. Çalışkan
Affiliation:
Sabancı University, İstanbul, Turkey email: alpar@sabanciuniv.edu
Ü. Ertan
Affiliation:
Sabancı University, İstanbul, Turkey email: alpar@sabanciuniv.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is in the 1012G range. All properties of the SGR 0418+5729 at its present age can be explained by spindown under torques from a fallback disk. (iii) The anomalous braking index of PSR J1734-3333 can also be explained by the fallback disk model which gives the luminosity, period, period derivative and the period second derivative at the present age. (iv) These and all applications to a variety of other sources employ the same disk physics and evolution, differing only in the initial conditions of the disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alpar, M. A. 2001, ApJ, 554, 1245Google Scholar
Alpar, M. A., Ertan, Ü., & Çalışkan, Ş. 2011, ApJ, 732, L4Google Scholar
Benli, O., et al. 2012, in preparationGoogle Scholar
Çalışkan, Ş., Ertan, Ü., Alpar, M. A., Trümper, J. E., & Kylafis, N. D. 2012, submitted to MNRASGoogle Scholar
Çalışkan, Ş. & Ertan, Ü. 2012, ApJ, 758, 98Google Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007, ApJ, 666, L93CrossRefGoogle Scholar
Chatterjee, B., Hernquist, L., & Narayan, R. 2000, ApJ, 534, 373Google Scholar
Cheng, K. S. & Ruderman, M. A. 1991, ApJ, 373, 187CrossRefGoogle Scholar
Durant, M. & van Kerkwijk, M. 2006, ApJ, 650, 1070Google Scholar
Ertan, Ü. & Cheng, K. S. 2004, ApJ, 605, 840CrossRefGoogle Scholar
Ertan, Ü., Erkut, M. H., Ekşi, K. Y., & Alpar, M. A. 2007, ApJ, 657, 441Google Scholar
Ertan, Ü. & Erkut, M. H. 2008, ApJ, 673, 1062Google Scholar
Ertan, Ü., et al. 2012, in preparationGoogle Scholar
Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N., & Kaspi, V. M. 2011, ApJ, 741, L13Google Scholar
Faucher-Giguere, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332Google Scholar
Göğüş, E. 2011, in: Göğüş, E., Belloni, T. & Ertan, Ü. (eds.), Astrophysics of Neutron Stars 2010, AIP Conference Proc. 1379 (Melville, New York: AIP), p. 128Google Scholar
Hulleman, F., Tennant, A. F., van Kerkwijk, M. H., Kulkarni, S. R., Kouveliotou, C., & Patel, S. 2000, ApJ, 563, L49Google Scholar
Inotsuka, S. & Sano, T. 2005, ApJ, 628, L155CrossRefGoogle Scholar
Kaplan, D. L., Chakrabarty, D., Wang, Z., & Wachter, S. 2009, ApJ, 700, 149Google Scholar
Kern, B. & Martin, C. 2002, Nature, 417, 527Google Scholar
Levin, L., Bailes, M., Bates, S., et al. 2010, ApJ, 721, L33Google Scholar
Mereghetti, S. 2008, A&A Rev, 15, 225Google Scholar
Michel, F. C. & Dessler, A. J. 1981, ApJ, 251, 654Google Scholar
Ng, C.-Y., Kaspi, V. M. 2011, Göğüş, E., Belloni, T. & Ertan, ü. (eds.), Astrophysics of Neutron Stars 2010, AIP Conference Proc. 1379 (Melville, New York: AIP), p. 60Google Scholar
Pons, J. A., Viganó, D., & Geppert, U. 2012, A&A, 547, 9Google Scholar
Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944Google Scholar
Rea, N., Israel, G. L., Esposito, P., et al. 2012, ApJ, 754, 27CrossRefGoogle Scholar
Rea, N., et al. 2012b, in preparationGoogle Scholar
Scholz, P., Ng, C.-Y., Livingstone, M. A., Kaspi, V. M., Cumming, A., & Archibald, R. 2012, van Leuwen, J. (ed.), Neutron Stars and Pulsars: Challenges and Opportunities after 80 years, Proc. IAU Symposium 291 (Cambridge University Press)Google Scholar
Turolla, R., Zane, S., Pons, J. A., Esposito, P., & Rea, N. 2011, ApJ, 740, 105Google Scholar
Wang, Z., Chakrabarty, D., & Kaplan, D. 2006, Nature, 440, 772Google Scholar
Woods, P. M. & Thompson, C. 2006, in: Lewin, W. H. G. & van der Klis, M. (eds.) Compact Stellar X-Ray Sources, Cambridge Astrophysics Series 39, (Cambridge University Press), p. 547Google Scholar