Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T08:16:25.292Z Has data issue: false hasContentIssue false

Final Fates of Massive Stars

Published online by Cambridge University Press:  05 September 2012

Ken'ichi Nomoto*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan email: nomoto@astron.s.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars are thought to play important roles in the early evolution of the Universe. In this paper, we first classify the final fates of massive stars into 7 cases according to their mass ranges. These variations of the final fate may correspond to the observed large diversities of supernova properties, such as extremely faint and extremely luminous (superluminous) supernovae, and the extremely energetic hypernovae. We then focus on the properties of the peculiar superluminous Type Ic supernova 1999as. We examine radioactive decay models, magnetar models, and circumstellar interaction models for the light curve of SN 1999as. We find that these models are not quite successful, and thus it is crucially important to improve these models to clarify the final fates of massive stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aldering, G., et al. 2006, ApJ, 650, 510CrossRefGoogle Scholar
Arnett, W. D. 1996, Nucleosynthesis and Supernovae (Princeton: Princeton Univ. Press)CrossRefGoogle Scholar
Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Letters, 18, 379CrossRefGoogle Scholar
Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, ApJ, 280, 825CrossRefGoogle Scholar
Deng, J., et al. 2002, ApJ, 605, L37CrossRefGoogle Scholar
Deng, J., Tominaga, N., Mazzali, P. A., Maeda, K., & Nomoto, K. 2005, ApJ, 624, 898CrossRefGoogle Scholar
Deng, J., et al. 2009, in preparationGoogle Scholar
Filippenko, A. V. 1997, ARAA, 35, 30CrossRefGoogle Scholar
Hatano, K., Maeda, K., Deng, J., Nomoto, K., et al. 2001, in ASPC Conf. Proc. 251., New Century of X-ray Astronomy, ed. Inoue, H. & Kunieda, H. (San Francisco: ASPC), 244Google Scholar
Herger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Höflich, P., Wheeler, J. C., Hines, D. C., & Trammell, S. R. 1996, ApJ, 459, 307CrossRefGoogle Scholar
Jeffery, D. J. & Branch, D. 1990, in Jerusalem Winter School for Theor. Phy. V. 6, Supernovae, ed. Wheeler, J. C., Piran, T., & Weinberg, S. (Singapore: World Scientific), 149Google Scholar
Kasen, D. 2004, Ph.D. Thesis, Univ. California at BerkeleyGoogle Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245Google Scholar
Khokhlov, A. M., Höflich, P. A., Oran, E. S., et al. 1999, ApJ, 524, L107CrossRefGoogle Scholar
Knop, R., et al. 1999, IAUC, 7128Google Scholar
Maeda, K., Nakumura, T., Nomoto, K., et al. 2002, ApJ, 565, 405CrossRefGoogle Scholar
Maeda, K. et al. 2007, ApJ, 666, 1069CrossRefGoogle Scholar
Mazzali, P. A., et al. 2006, ApJ, 645, 1323CrossRefGoogle Scholar
Nakamura, T, Mazzali, P. A., Nomoto, K., & Iwamoto, K. 2001, ApJ, 550, 991CrossRefGoogle Scholar
Nomoto, K. & Hashimoto, M 1988, Phys. Rep., 163, 13CrossRefGoogle Scholar
Nomoto, K., et al. 2006, Nuclear Phys A 777, 424 (astro-ph/0605725)CrossRefGoogle Scholar
Nomoto, K., et al. 2009, in IAU Symp. 254, The Galaxy Disk in Cosmological Context, ed. Andersen, J., et al. (Cambridge: Cambridge Univ. Press), 355 (arXiv: 0901.4536)Google Scholar
Nomoto, K., et al. 2010, in IAU Symp. 265, Chemical Abundances in the Universe: Connecting First Stars to Planet, ed. Cunha, K., et al. (Cambridge: Cambridge Univ. Press), 34Google Scholar
Nozawa, T., et al. 2008, ApJ, 684, 1343CrossRefGoogle Scholar
Nugent, P., et al. 2009, private communicationGoogle Scholar
Pumo, M. L., et al. 2009, ApJ, 705, L138CrossRefGoogle Scholar
Quimby, R. M., Aldering, C., Wheeler, J. C., et al. 2007, ApJ, 668, L99CrossRefGoogle Scholar
Richardson, D., Branch, D., Casebeer, D., et al. 2002, ApJ, 123, 745CrossRefGoogle Scholar
Shigeyama, T., Nomoto, K., & Hashimoto, M. 1988, A&A, 196, 141Google Scholar
Smartt, S. J. 2009, ARAA, 47, 63CrossRefGoogle Scholar
Smith, N., Foley, R. J., & Filippenko, A. V., 2008, ApJ, 680, 568CrossRefGoogle Scholar
Suzuki, T. & Nomoto, K. 1995, ApJ, 455, 658CrossRefGoogle Scholar
Suzuki, T. K., Nakasato, N., Baumgardt, H., et al. 2007, ApJ, 668, L19CrossRefGoogle Scholar
Tanaka, M., Maeda, K., Mazzali, P. A., & Nomoto, K. 2007, ApJ, 668, L19CrossRefGoogle Scholar
Tomita, H., et al. 2006, ApJ, 644, 400CrossRefGoogle Scholar
Tominaga, N., et al. 2005, ApJ, 633, L97CrossRefGoogle Scholar
Tominaga, N., et al. 2008, ApJ, 687, 1208CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2008, ApJ, 673, 1014CrossRefGoogle Scholar
Woosley, S. E., 2010, ApJ, 719, L204CrossRefGoogle Scholar