Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:24:38.640Z Has data issue: false hasContentIssue false

A first look into the magnetic field configuration of prominence threads using spectropolarimetric data

Published online by Cambridge University Press:  06 January 2014

D. Orozco Suárez
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
A. Asensio Ramos
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
J. Trujillo Bueno
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain Consejo Superior de Investigaciones Científicas, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show preliminary results of an ongoing investigation aimed at determining the configuration of the magnetic field vector in the threads of a quiescent hedgerow solar prominence using high-spatial resolution spectropolarimetric observations taken in the He I 1083.0 nm multiplet. The data consist of a two-dimensional map of a quiescent hedgerow prominence showing vertical threads. The observations were obtained with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Spain). The He I 1083.0 nm Stokes signals are interpreted with an inversion code, which takes into account the key physical processes that generate and/or modify circular and linear polarization signals in the He I 1083.0 nm triplet: the Zeeman effect, anisotropic radiation pumping, and the Hanle effect. We present initial results of the inversions, i.e, the strength and orientation of the magnetic field vector along the prominence and in prominence threads.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl'Innocenti, E. 2008, ApJ, 683, 542CrossRefGoogle Scholar
Athay, R. G., Querfeld, C. W., Smartt, R. N., Landi Degl'Innocenti, E., & Bommier, V. 1983, Solar Phys., 89, 3Google Scholar
Berger, T. E., Shine, R. A., Slater, G. L., et al. 2008, ApJl, 676, L89Google Scholar
Berger, T. E., Slater, G., Hurlburt, N., et al. 2010, ApJ, 716, 1288CrossRefGoogle Scholar
Bommier, V., Landi Degl'Innocenti, E., Leroy, J.-L., & Sahal-Brechot, S. 1994, Solar Phys., 154, 231Google Scholar
Casini, R., Bevilacqua, R. & López Ariste, A. 2005, ApJ, 622, 1265Google Scholar
Casini, R., López Ariste, A., Tomczyk, S., & Lites, B. W. 2003, ApJl, 598, L67Google Scholar
Chae, J., Ahn, K., Lim, E.-K., Choe, G. S., & Sakurai, T. 2008, ApJl, 689, L73Google Scholar
Collados, M., Lagg, A., Díaz Garcí, A. J. J., et al. 2007, The Physics of Chromospheric Plasmas, 368, 611Google Scholar
Kippenhahn, R. & Schlüter, A. 1957, ZAp, 43, 36Google Scholar
Kuckein, C., Centeno, R., Martínez Pillet, V., et al. 2009, A&A, 501, 1113Google Scholar
Kuckein, C., Martínez Pillet, V., & Centeno, R. 2012a, A&A, 542, A112Google Scholar
Kuckein, C., Martínez Pillet, V., & Centeno, R. 2012b, A&A, 539, A131Google Scholar
Kuperus, M. & Raadu, M. A. 1974, A&A, 31, 189Google Scholar
Haerendel, G. & Berger, T. 2011, ApJ, 731, 82CrossRefGoogle Scholar
Hillier, A., Berger, T., Isobe, H., & Shibata, K. 2012, ApJ, 746, 120Google Scholar
Hillier, A., Hillier, R., & Tripathi, D. 2012, ApJ, 761, 106Google Scholar
Labrosse, N., Heinzel, P., Vial, J.-C., et al. 2010, Space Sci. Revs, 151, 243CrossRefGoogle Scholar
Landi Degl'Innocenti, E. & Landolfi, M. 2004, Astrophysics and Space Science Library, 307Google Scholar
Leroy, J. L., Bommier, V., & Sahal-Brechot, S. 1983, Solar Phys., 83, 135Google Scholar
Lin, H., Penn, M. J., & Kuhn, J. R. 1998, ApJ, 493, 978CrossRefGoogle Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. 2010, Space Sci. Revs, 151, 333Google Scholar
Merenda, L., Trujillo Bueno, J., Landi Degl'Innocenti, E., & Collados, M. 2006, ApJ, 642, 554CrossRefGoogle Scholar
Merenda, L., Trujillo Bueno, J., & Collados, M. 2007, The Physics of Chromospheric Plasmas, 368, 347Google Scholar
Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. 2012, ApJl, 761, L25CrossRefGoogle Scholar
Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. 2013, Highlights of Spanish Astrophysics VII, 786Google Scholar
Socas-Navarro, H., Trujillo Bueno, J., & Landi Degl'Innocenti, E. 2004, ApJ, 612, 1175Google Scholar
Trujillo Bueno, J. & Asensio Ramos, A. 2007, ApJ, 655, 642Google Scholar
Trujillo Bueno, J., Landi Degl'Innocenti, E., Collados, M., Merenda, L. & Manso Sainz, R. 2002, Nature, 415, 403Google Scholar
Xu, Z., Lagg, A., Solanki, S., & Liu, Y. 2012, ApJ, 749, 138Google Scholar