Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T23:04:55.857Z Has data issue: false hasContentIssue false

Flux emergence simulation and coronal response at ephemeral region scale

Published online by Cambridge University Press:  23 December 2024

Zi–Fan Wang*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
R. H. Cameron
Affiliation:
Max Plank Institute for Solar System Research, Goettingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Flux emergence at different spatial scales and with different amounts of flux has been studied using radiative magnetohydrodynamics (rMHD) simulations. We use the radiative MHD code MURaM to simulate the emergence of an untwisted magnetic flux tube of ephemeral region scale with a density nonuniformity into a background atmosphere with a small unipolar open field. We find that the tube rises to the photosphere, forming complex loop structures seen in synthetic Atmospheric Imaging Assembly(AIA) 171 Å images. The atmosphere reaches 105 K at 3Mm above the surface. Our simulation provides a reference example of a less twisted ephemeral region emergence and the atmospheric response.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Boerner, P., Edwards, C., Lemen, J., et al. 2012, Solar Phys., 275, 41. doi: 10.1007/s11207-011-9804-8 CrossRefGoogle Scholar
Chen, F., Rempel, M., & Fan, Y. 2017, Astrophys. J., 846, 149. doi: 10.3847/1538-4357/aa85a0 CrossRefGoogle Scholar
Cheung, M. C. M., Rempel, M., Title, A. M., et al. 2010, Astrophys. J., 720, 233. doi: 10.1088/0004-637X/720/1/233 CrossRefGoogle Scholar
Fan, Y. 2008, Astrophys. J., 676, 680. doi: 10.1086/527317 CrossRefGoogle Scholar
Hagenaar, H. J. 2001, Astrophys. J., 555, 448. doi: 10.1086/321448 CrossRefGoogle Scholar
Hagenaar, H. J., Schrijver, C. J., & Title, A. M. 2003, Astrophys. J., 584, 1107. doi: 10.1086/345792 CrossRefGoogle Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B., et al. 1919, Astrophys. J., 49, 153 CrossRefGoogle Scholar
Harvey, K. L. & Martin, S. F. 1973, Solar Phys., 32, 389. doi: 10.1007/BF00154951 CrossRefGoogle Scholar
Illarionov, E., Tlatov, A., & Sokoloff, D. 2015, Solar Phys., 290, 351. doi: 10.1007/s11207-014-0612-9 CrossRefGoogle Scholar
Krall, J., Chen, J., Santoro, R., et al. 1998, Astrophys. J., 500, 992. doi: 10.1086/305754 CrossRefGoogle Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Phys., 275, 17. doi: 10.1007/s11207-011-9776-8 CrossRefGoogle Scholar
Longcope, D. W., Fisher, G. H., & Arendt, S. 1996, Astrophys. J., 464, 999. doi: 10.1086/177387 CrossRefGoogle Scholar
Moreno–Insertis, F. & Emonet, T. 1996, Astrophys. J. Lett., 472, L53. doi: 10.1086/310360 CrossRefGoogle Scholar
Rempel, M. 2012, Astrophys. J., 750, 62. doi: 10.1088/0004-637X/750/1/62 CrossRefGoogle Scholar
Rempel, M. 2017, Astrophys. J., 834, 10. doi: 10.3847/1538-4357/834/1/10 CrossRefGoogle Scholar
Rempel, M., Schüssler, M., & Knölker, M. 2009, Astrophys. J., 691, 640. doi: 10.1088/0004-637X/691/1/640 CrossRefGoogle Scholar
Schuessler, M. 1979, Astron. Astrophys., 71, 79 Google Scholar
van Driel–Gesztelyi, L., & Green, L. M. 2015, Living Reviews in Solar Physics, 12, 1 CrossRefGoogle Scholar
Vögler, A., Shelyag, S., Schüssler, M., et al. 2005, Astron. Astrophys., 429, 335. doi: 10.1051/0004-6361:20041507 CrossRefGoogle Scholar
Wilson, P. R., Altrocki, R. C., Harvey, K. L., et al. 1988, Nature, 333, 748. doi: 10.1038/333748a0 CrossRefGoogle Scholar