Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T20:27:15.821Z Has data issue: false hasContentIssue false

Foreground Mitigation in the Epoch of Reionization

Published online by Cambridge University Press:  08 May 2018

Emma Chapman*
Affiliation:
Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, United Kingdom email: e.chapman@imperial.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The EoR foregrounds can be up to three magnitudes greater than the cosmological signal we wish to detect. Multiple methods have been developed in order to extract the cosmological signal, falling roughly into three categories: foreground removal, foreground suppression and foreground avoidance. These main approaches are briefly discussed in this review and consideration taken to the future application of these methods as a multi-layered approach.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ali, Z., Parsons, A. R., Zheng, H., Pober, J. C., et al. 2015, ApJ, 809, 61Google Scholar
Asad, K. M. B., Koopmans, L. V. E., Jelić, V., & Pandey, V. N., et al. 2015, MNRAS, 451, 3709CrossRefGoogle Scholar
Bobin, J., Moudden, Y., Starck, J.-L., Fadili, J. & Aghanim, N., Statistical Methodology, 5, 307CrossRefGoogle Scholar
Bonaldi, A. & Brown, M. L., 2015, MNRAS, 447, 1973CrossRefGoogle Scholar
Bowman, J. D., Morales, M., & Hewitt, J. N., 2009, ApJ, 695, 183Google Scholar
Bowman, J. D., Morales, M. F., & Hewitt, J. N., 2006, ApJ, 638, 20CrossRefGoogle Scholar
Carroll, P. A., Line, J., Morales, M. F., Barry, N., et al. 2016, MNRAS, 461, 4151Google Scholar
Chapman, E., Zaroubi, S., Abdalla, F. B., Dulwich, F., et al. 2016, MNRAS, 458, 2928CrossRefGoogle Scholar
Chapman, E., Abdalla, F. B., Bobin, J., Starck, J.-L. et al. MNRAS, 429, 165CrossRefGoogle Scholar
Chapman, E., Abdalla, F. B., Harker, G., Jelić, V. et al. MNRAS, 423, 2518CrossRefGoogle Scholar
Cooray, A., Furlanetto, S. R., 2004, ApJL, 606, L5Google Scholar
Datta, A., Bowman, J. D., & Carilli, C. L., 2010, ApJ, 724, 526CrossRefGoogle Scholar
Di Matteo, T., Perna, R., Abel, T., & Rees, M. J., 2002, ApJ, 564, 576CrossRefGoogle Scholar
Di Matteo, T., Ciardi, B., & Miniati, F, 2004, MNRAS, 355, 1053Google Scholar
Dillon, J. S., Liu, A., Williams, C. L., Hewitt, J. N., et al. 2014, Phys, Rev. D, 89, 023002CrossRefGoogle Scholar
Gleser, L., Nusser, A. & Benson, A. J. 2008, MNRAS,391,383Google Scholar
Harker, G., Zaroubi, S., Bernardi, G., & Brentjens, M. A., 2009, MNRAS, 397, 1138Google Scholar
Hazelton, B. J., Morales, M. F., & Sullivan, I. S., 2013, ApJ, 770, 156Google Scholar
Hyvärinen, A., 1999, Neural Networks, IEEE Transactions, 10, 626CrossRefGoogle Scholar
Jelić, V., Zaroubi, S., Labropoulos, P., Thomas, R. M., et al. 2008, MNRAS, 389, 1319CrossRefGoogle Scholar
Jensen, H., Majumdar, S., Mellema, G., Lidz, A., et al. 2016, MNRAS, 456, 66Google Scholar
Kohn, S. A., Aguirre, J. E., Nunhokee, C. D., Bernardi, G., et al. 2017, ApJ, 823, 88CrossRefGoogle Scholar
Liu, A., Parson, A., & Trott, C., 2014, Phys. Rev. D, 90, 023018CrossRefGoogle Scholar
Liu, A., Parson, A., & Trott, C., 2014, Phys. Rev. D, 90, 023019CrossRefGoogle Scholar
Liu, A., Tegmark, M., & Zaldarriaga, M., 2009, MNRAS, 394, 1575Google Scholar
Liu, A., Tegmark, M., Bowman, J., Hewitt, J., & Zaldarriaga, M., 2009, MNRAS, 398, 401Google Scholar
Liu, A. & Tegmark, M., 2011, Phys. Rev. D, 83, 103006Google Scholar
McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., & Furlanetto, S. R., 2006, ApJ, 653, 815CrossRefGoogle Scholar
Morales, M. F., Hazelton, B., Sullivan, I., & Beardsley, A., 2012, ApJ, 752, 137Google Scholar
Morales, M., Bowman, J. D., & Hewitt, J. N., 2006, ApJ, 648, 767Google Scholar
Mozdzen, T. J., Bowman, J. D., Monsalve, R. A., & Rogers, A. E. E., 2017, MNRAS, 464, 4995CrossRefGoogle Scholar
Nunhokee, C. D., Bernardi, G., Kohn, S. A., Aguirre, J. E., et al. 2017, ApJ, 848, 47CrossRefGoogle Scholar
Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M, 2012, A&A, 539, A95Google Scholar
Oh, S. P. & Mack, K. J., 2003, MNRAS, 346, 871Google Scholar
Parsons, A., Pober, J. C., Aguirre, J. E., Carilli, C. L., ApJ, 756, 165Google Scholar
Patil, A. H., Yatawatta, S., Koopmans, L. V. E., de Bruyn, A. G., et al. 2017, ApJ, 838, 65CrossRefGoogle Scholar
Petrovic, N. & Oh, S. P., 2011, MNRAS, 413, 2103Google Scholar
Pober, J. C., Hazelton, B. J., Beardsley, A. P., & Barry, N. A., 2013, ApJ, 819, 8CrossRefGoogle Scholar
Procopio, P., Wayth, R. B., Line, J., et al. 2017, PASA, 34, e033Google Scholar
Santos, M. G., Cooray, A., & Knox, L., 2005, ApJ, 625, 575Google Scholar
Thyagarajan, N., Jacobs, D. C., Bowman, J. D., Barry, N., et al. 2015, ApJ, 807, L28CrossRefGoogle Scholar
Tingay, S. J., Goeke, R, Bowman, J. D., & Emrich, D, 2012, PASA, 30, 7Google Scholar
Trott, C. M., Wayth, R. B., & Tingay, S. J., 2012, ApJ, 757, 101Google Scholar
Trott, C. M., Pindor, B., Procopio, P., Wayth, R. B., et al. 2016, ApJ, 818, 139Google Scholar
Vedantham, H., Udaya Shankar, N., & Subrahmanyan, R., 2012, ApJ, 745, 176Google Scholar
Wang, X., Tegmark, M., Santos, M. G., & Knox, L., 2006, ApJ, 650, 529Google Scholar
Wang, J., Xu, H., An, T., Gu, J., et al. 2013, ApJ, 763, 90Google Scholar
Yatawatta, S., de Bruyn, A. G., Brentjens, M. A., Labropoulos, P., et al. 2013, A&A, 550, 136Google Scholar
Zaldarriaga, M., Furlanetto, S. R., & Hernquist, L., 2004, ApJ, 608, 622Google Scholar
Zhang, Le, Bunn, E. F., Karakci, A., Korotkov, A., et al. 2016, ApJS, 222, 3Google Scholar