Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T11:45:42.622Z Has data issue: false hasContentIssue false

Formation of complex organic molecules in astrophysical environments: Sugars and derivatives

Published online by Cambridge University Press:  12 October 2020

Michel Nuevo
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA email: michel.nuevo-1@nasa.gov BAER Institute, NASA Research Park, Moffett Field, CA 94035, USA
George Cooper
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA email: michel.nuevo-1@nasa.gov
John M. Saunders
Affiliation:
University of California, Chemistry and Biochemistry Department, Santa Cruz, CA 95064, USA
Christina E. Buffo
Affiliation:
Wellesley College, Department of Chemistry, 106 Central Street, Wellesley, MA 02481, USA
Scott A. Sandford
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA email: michel.nuevo-1@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbonaceous meteorites contain a large variety of complex organic molecules, including amino acids, nucleobases, sugar derivatives, amphiphiles, and other compounds of astrobiological interest. Photoprocessing of ices condensed on cold grains with ultraviolet (UV) photons was proposed as an efficient way to form such complex organics in astrophysical environments. This hypothesis was confirmed by laboratory experiments simulating photo-irradiation of ices containing H2O, CH3OH, CO, CO2, CH4, H2CO, NH3, HCN, etc., condensed on cold (~10–80 K) substrates. These experiments resulted in the formation of amino acids, nucleobases, sugar derivatives, amphiphilic compounds, and other organics comparable to those identified in carbonaceous meteorites. This work presents results for the formation of sugars, sugar alcohols, sugar acids, and their deoxy variants from the UV irradiation of ices containing H2O and CH3OH in relative proportions 2:1, and their comparison with meteoritic data. The formation mechanisms of these compounds and the astrobiological implications are also discussed.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allamandola, L. J., Bernstein, M. P., Sandford, S. A., & Walker, R. L. 1999, Space Sci. Rev., 90, 219 CrossRefGoogle Scholar
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., et al. 2002, Nature, 416, 401 CrossRefGoogle Scholar
Breslow, R. 1959, Tetrahedron Lett., 1, 22 Google Scholar
Browning, L. B., McSween, H. Y. (Jr.), & Zolensky, M. E. 1996, Geochim. Cosmochim. Acta, 60, 2621 CrossRefGoogle Scholar
Butlerow, A. 1861, Justus Liebigs Ann. Chem., 120, 295 CrossRefGoogle Scholar
Callahan, M. P., Smith, K. E., Cleaves, H. J. (II), et al. 2011, PNAS, 108, 13995 CrossRefGoogle Scholar
Cooper, G., Kimmich, N., Belisle, W., et al. 2001, Nature, 414, 879 CrossRefGoogle Scholar
Cronin, J. R. & Pizzarello, S. 1997, Science, 275, 951 CrossRefGoogle Scholar
Dartois, E. 2005, Space Sci. Rev., 119, 293 Google Scholar
Deamer, D. W. 1985, Nature, 317, 792 CrossRefGoogle Scholar
Dworkin, J. P., Deamer, D. W., Sandford, S. A., & Allamandola, L. J. 2001, PNAS, 98, 815 CrossRefGoogle Scholar
Dworkin, L. J., Gillette, J. S., Bernstein, M. P., et al. 2004, Adv. Space Res., 33, 67 Google Scholar
Ehrenfreund, P. & Charnley, S. B. 2000, Ann. Rev. Astron. Astrophys., 38, 427 CrossRefGoogle Scholar
Elsila, J. E., Dworkin, J. P., Bernstein, M. P., et al. 2007, ApJ, 660, 911 CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJSS, 151, 35 CrossRefGoogle Scholar
de Marcellus, P., Bertrand, M., Nuevo, M., et al. 2011, Astrobiology, 11, 847 CrossRefGoogle Scholar
Martins, Z., Botta, O., Fogel, M. L., et al. 2008, Earth Planet. Sci. Lett., 270, 130 CrossRefGoogle Scholar
Materese, C. K., Nuevo, M., McDowell, B. L., et al. 2018, ApJ, 864, 44 CrossRefGoogle Scholar
Meinert, C., Myrgorodska, I., de Marcellus, P., et al. 2016, Science, 352, 208 CrossRefGoogle Scholar
Muñoz Caro, G.M., Meierhenrich, U. J., Schutte, W. A., et al. 2002, Nature, 416, 403 CrossRefGoogle Scholar
Nuevo, M., Auger, G., Blanot, D., & d’Hendecourt, L. 2008, Orig. Life Evol. Biosph., 38, 37 CrossRefGoogle Scholar
Nuevo, M., Bredehöft, J. H., Meierhenrich, U. J., et al. 2010, Astrobiology, 10, 245 CrossRefGoogle Scholar
Nuevo, M., Cooper, G., & Sandford, S. A. 2018, Nature Commun., 9, 5276 CrossRefGoogle Scholar
Nuevo, M., Materese, C. K., & Sandford, S. A. 2014, ApJ, 793, 125 CrossRefGoogle Scholar
Nuevo, M., Sandford, S. A., Materese, C. K., & Cooper, G. W. 2015, Astrobiology Science Conference, 15–19 June 2015, Chicago, IL, USA, Abstract No. 7132 Google Scholar
Oró, J. & Cox, G. W. 1962, Fed. Proc., Carbohydrates-Chemistry, 21, 80 Google Scholar
Palmer, E. E. & Lauretta, D. S. 2011, Meteorit. Planet. Sci., 46, 1587 CrossRefGoogle Scholar
Ritson, D. J. & Sutherland, J. D. 2014, J. Mol. Evol., 78, 245 CrossRefGoogle Scholar