No CrossRef data available.
Article contents
The formation of Supersonically Induced Gas Objects (SIGOs) with H2 cooling
Published online by Cambridge University Press: 20 January 2023
Abstract
During the recombination of the universe, supersonic relative motion between baryons and dark matter (DM) generally existed. In the presence of such streaming motions, gas clumps can collapse outside of virial radii of their closest dark matter halos. Such baryon dominant objects are thought to be self-gravitating and are called supersonically induced gas objects; SIGOs. We perform three-dimensional hydrodynamical simulations by including H2 chemical reactions and stream velocity and follow SIGO’s formation from z = 200 to z = 25. SIGOs can be formed under the influence of stream velocity, and cooling is effective in contracting gas clouds. We follow its further evolution with higher resolution. We find that there are SIGOs which become Jeans unstable outside of the virial radius of the closest DM halos. Those SIGOs are gravitationally unstable and trigger star formation.
- Type
- Contributed Paper
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union