Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T00:26:28.108Z Has data issue: false hasContentIssue false

Formation of terrestrial planets from planetesimals around M dwarfs

Published online by Cambridge University Press:  01 October 2007

Masahiro Ogihara
Affiliation:
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1-I2-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan email: ogihara@geo.titech.ac.jp, ida@geo.titech.ac.jp
Shigeru Ida
Affiliation:
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1-I2-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan email: ogihara@geo.titech.ac.jp, ida@geo.titech.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have investigated accretion of terrestrial planets from planetesimals around M dwarfs through N-body simulations including the effect of tidal interaction with disk gas. Because of low luminosity of M dwarfs, habitable zones around them are located near the disk inner edge. Planetary embryos undergo type-I migration and pile up near the disk inner edge. We found that after repeated close scatterings and occasional collisions, three or four planets eventually remain in stable orbits in their mean motion resonances. Furthermore, large amount of water-rich planetesimals rapidly migrate to the terrestrial planet regions from outside of the snow line, so that formed planets in these regions have much more water contents than those around solar-type stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Beaulieu, J.-P., Bennett, D. P., Fouqué, P., Williams, A., Dominik, M., Jørgensen, U. G., Kubas, D., Cassan, A., Coutures, C., Greenhill, J., Hill, K., Menzies, J., Sackett, P. D., Albrow, M., Brillant, S., Caldwell, J. A. R., Calitz, J. J., Cook, K. H., Corrales, E., Desort, M., Dieters, S., Dominis, D., Donatowicz, J., Hoffman, M., Kana, S., Marquette, J.-B., Martin, R., Meintjes, P., Pollard, K., Sahu, K., Vinter, C., Wambsganss, J., Woller, K., Horne, K., Steele, I., Bramich, D. M., Burgdorf, M., Snodgrass, C., Bode, M., Udalski, A., Szymański, M. K., Kubiak, M., Wieckowski, T., Pietrzyński, G., Soszyński, I., Szewczyk, O., Wyrzykowski, Ł., Paczyński, B., Abe, F., Bond, I. A., Britton, T. R., Gilmore, A. C., Hearnshaw, J. B., Itow, Y., Kamiya, K., Kilmartin, P. M., Korpela, A. V., Masuda, K., Matsubara, Y., Motomura, M., Muraki, Y., Nakamura, S., Okada, C., Ohnishi, K., Rattenbury, N. J., Sako, T., Sato, S., Sasaki, M., Sekiguchi, T., Sullivan, D. J., Tristram, P. J., Yock, P. C. M., & Yoshioka, T. 2006, Nature, 439, 437CrossRefGoogle Scholar
Gillon, M., Pont, F., Demory, B.O., Mallmann, F., Mayor, M., Mazeh, T., Queloz, D., Shporer, A., Udry, S., & Vuissoz, C. 2007, A&A, 472, L13Google Scholar
Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425CrossRefGoogle Scholar
Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35CrossRefGoogle Scholar
Ida, S. & Lin, D.N.C. 2005, ApJ, 626, 1045CrossRefGoogle Scholar
Johnson, J. A., Butler, R. P., Marcy, G. W., Fischer, D. A., Vogt, S. S., Wright, J. T., & Peek, K. M. G. 2007, ApJ, 670, 833CrossRefGoogle Scholar
Raymond, S. N., Scalo, J., & Meadows, V. S. 2007, ApJ, 669, 606CrossRefGoogle Scholar
Tanaka, H. & Ward, W. R. 2004, ApJ, 602, 388CrossRefGoogle Scholar
Terquem, C. & Papaloizou, J. C. B. 2007, ApJ, 654, 1110CrossRefGoogle Scholar
Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., & Bertaux, J. L. 2007, A&A, 469, L43Google Scholar
Ward, W. R. 1986, Icarus, 67, 164CrossRefGoogle Scholar