Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:34:38.944Z Has data issue: false hasContentIssue false

Full Stokes observations in the He i 1083 nm spectral region covering an M3.2 flare

Published online by Cambridge University Press:  24 July 2015

Christoph Kuckein
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam, Germany email: ckuckein@aip.de
Manuel Collados
Affiliation:
Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
Rafael Manso Sainz
Affiliation:
Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
Andrés Asensio Ramos
Affiliation:
Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infrared Polarimeter in the He i 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He i 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si i 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He i triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He i triplet much stronger than the red component, and both are stronger than the Si i Stokes V profile. The Si i inversions reveal enormous changes of the photospheric magnetic field during the flare. Before the flare magnetic field concentrations of up to ~1500 G are inferred. During the flare the magnetic field strength globally decreases and in some cases it is even absent. After the flare the magnetic field recovers its strength and initial configuration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Akimov, L. A., Belkina, I. L., & Marchenko, G. P. 2014, MNRAS 439, 193 Google Scholar
Avrett, E. H., Fontenla, J. M., & Loeser, R. 1994, in: Rabin, D.M., Jefferies, J.T., & Lindsey, C. (eds.), Infrared Solar Physics, IAU Symp. No. 154 (Dordrecht: Kluwer), p. 35 Google Scholar
Bard, S. & Carlsson, M. 2008, ApJ 682, 1376 Google Scholar
Berkefeld, T., Soltau, D., Schmidt, D., & von der Lühe, O. 2010, Applied Optics 49, G155 Google Scholar
Collados, M. 1999, in: Schmieder, B., Hofmann, A., & Staude, J. (eds.), Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, ASP Conf. Series 184 (San Francisco: ASP), p. 3 Google Scholar
Collados, M. V. 2003, in: Fineschi, S. (ed.), Polarimetry in Astronomy, Proc. SPIE 4843, p. 55Google Scholar
Collados, M., Lagg, A., Díaz Garcí, A. J. J., Hernández Suárez, E., López López, R., Páez Mañá, E., & Solanki, S. K. 2007, in: Heinzel, P., Dorotovič, I., & Rutten, R.J. (eds.), The Physics of Chromospheric Plasmas, ASP Conf. Series 368 (San Francisco: ASP), p. 611 Google Scholar
Collados, M., López, R., Páez, E., et al. 2012, AN 333, 872 Google Scholar
Ding, M. D., Li, H., & Fang, C. 2005, A&A 432, 699 Google Scholar
Du, Q.-S. & Li, H. 2008, Chinese J. Astron. Astrophys. 8, 723 Google Scholar
Judge, P. G., Kleint, L., Donea, A., Sainz Dalda, A., & Fletcher, L. 2014, ApJ 796, 85 Google Scholar
Kuckein, C., Martínez Pillet, V., & Centeno, R. 2012, A&A 542, A112 Google Scholar
Kuckein, C., Collados, M., & Manso Sainz, R. 2015, ApJ (Letters) 799, L25 Google Scholar
Li, H., You, J., Yu, X., & Du, Q. 2007, Solar Phys. 241, 301 Google Scholar
Malanushenko, E. V. 1999, Astronomical and Astrophysical Transactions 18, 273 CrossRefGoogle Scholar
Neckel, H. & Labs, D. 1984, Solar Phys. 90, 205 Google Scholar
Penn, M. J. & Kuhn, J. R. 1995, ApJ (Letters) 441, L51 CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Solar Phys. 275, 3 CrossRefGoogle Scholar
Petrie, G. J. D. & Sudol, J. J. 2010, ApJ 724, 1218 Google Scholar
Puschmann, K. G., Denker, C., Kneer, F., et al. 2012, AN 333, 880 Google Scholar
Ruiz Cobo, B. & del Toro Iniesta, J. C 1992, ApJ 398, 375 Google Scholar
Sasso, C., Lagg, A., & Solanki, S. K. 2011, A&A 526, 42 Google Scholar
Sasso, C., Lagg, A., & Solanki, S. K. 2014, A&A 561, A98 Google Scholar
Schmidt, W., von der Lühe, O., Volkmer, R., et al. 2012, AN 333, 796 Google Scholar
Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Solar Phys. 275, 229 Google Scholar
von der Lühe, O. 1998, New Astron. Revs 42, 493 CrossRefGoogle Scholar
You, J. Q. & Oertel, G. K. 1992, ApJ (Letters) 389, L33 Google Scholar
Zeng, Z., Qiu, J., Cao, W., & Judge, P. G. 2014, ApJ 793, 87 Google Scholar