Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T12:48:24.852Z Has data issue: false hasContentIssue false

Gas accretion from the cosmic web in the local Universe

Published online by Cambridge University Press:  12 October 2016

J. Sánchez Almeida
Affiliation:
Instituto de Astrofí sica de Canarias, E-38205 La Laguna, Tenerife, Spain email: jos@iac.es, cmt@iac.es Departamento de Astrofsica, Universidad de La Laguna, Tenerife, Spain
B. G. Elmegreen
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA email: bge@us.ibm.com
C. Muñoz-Tuñnón
Affiliation:
Instituto de Astrofí sica de Canarias, E-38205 La Laguna, Tenerife, Spain email: jos@iac.es, cmt@iac.es Departamento de Astrofsica, Universidad de La Laguna, Tenerife, Spain
D. M. Elmegreen
Affiliation:
Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604, USA email: elmegreen@vassar.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical simulations predict that gas accretion from the cosmic web drives star formation in disks galaxies. The process is important in low mass haloes (< 1012 M), therefore, in the early universe when galaxies were low mass, but also in dwarf galaxies of the local universe. The gas that falls in is predicted to be tenuous, patchy, partly ionized, multi-temperature, and large-scale; therefore, hard to show in a single observation. One of the most compelling cases for gas accretion at work in the local universe comes from the extremely metal poor (XMP) galaxies. They show metallicity inhomogeneities associated with star-forming regions, so that large starbursts have lower metallicity than the underlying galaxy. Here we put forward the case for gas accretion from the web posed by XMP galaxies. Two other observational results are discussed too, namely, the fact that the gas consumption time-scale is shorter than most stellar ages, and the systematic morphological distortions of the HI around galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Ashley, T., Simpson, C. E., & Elmegreen, B. G. 2013, AJ, 146, 42 Google Scholar
Benson, A. J. 2010, Physics Reports, 495, 33 CrossRefGoogle Scholar
Bournaud, F., Combes, F., Jog, C. J., & Puerari, I. 2005, A&A, 438, 507 Google Scholar
Bournaud, F. & Elmegreen, B. G. 2009, ApJ, 694, L158 CrossRefGoogle Scholar
Ceverino, D., Dekel, A., & Bournaud, F. 2010, MNRAS, 404, 2151 Google Scholar
Combes, F. 2014, in Astronomical Society of the Pacific Conference Series, Vol. 480, Structure and Dynamics of Disk Galaxies, ed. Seigar, M. S. & Treuthardt, P., 211 Google Scholar
Conselice, C. J., Mortlock, A., Bluck, A. F. L., Grützbauch, R., & Duncan, K. 2013, MNRAS, 430, 1051 CrossRefGoogle Scholar
Cresci, G., Mannucci, F., Maiolino, R., et al. 2010, Nat, 467, 811 Google Scholar
Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nat, 457, 451 CrossRefGoogle Scholar
Fraternali, F. 2014, in IAU Symposium, Vol. 298, IAU Symposium, ed. Feltzing, S., Zhao, G., Walton, N. A., & Whitelock, P., 228239 CrossRefGoogle Scholar
Genel, S., Naab, T., Genzel, R., et al. 2012, ApJ, 745, 11 Google Scholar
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091 Google Scholar
Gnedin, N. Y., Tasker, E. J., & Fujimoto, Y. 2014, ApJ, 787, L7 CrossRefGoogle Scholar
Haurberg, N. C., Rosenberg, J., & Salzer, J. J. 2013, ApJ, 765, 66 Google Scholar
Heavens, A., Panter, B., Jimenez, R., & Dunlop, J. 2004, Nat, 428, 625 Google Scholar
Izotov, Y. I., Guseva, N. G., Fricke, K. J., & Papaderos, P. 2009, A&A, 503, 61 Google Scholar
Johnson, M., Hunter, D. A., Oh, S.-H., et al. 2012, AJ, 144, 152 Google Scholar
Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJ, 760, L7 Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541 Google Scholar
Lelli, F., Verheijen, M., Fraternali, F., & Sancisi, R. 2012, A&A, 544, A145 Google Scholar
Levesque, E. M., Berger, E., Soderberg, A. M., & Chornock, R. 2011, ApJ, 739, 23 Google Scholar
Li, Y., Bresolin, F., & Kennicutt, R. C. Jr. 2013, ApJ, 766, 17 Google Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415 Google Scholar
Morales-Luis, A. B., Sánchez Almeida, J., Aguerri, J. A. L., & Muñoz-Tuñón, C. 2011, ApJ, 743, 77 Google Scholar
Nidever, D. L., Ashley, T., Slater, C. T., et al. 2013, ApJ, 779, L15 Google Scholar
Noguchi, M. 1999, ApJ, 514, 77 Google Scholar
Peeples, M. S. & Shankar, F. 2011, MNRAS, 417, 2962 Google Scholar
Sánchez Almeida, J., Elmegreen, B. G., Muñoz-Tuñón, C., & Elmegreen, D. M. 2014a, A&Ar, 22, 71 Google Scholar
Sánchez Almeida, J., Morales-Luis, A. B., Muñoz-Tuñón, C., et al. 2014b, ApJ, 783, 45 Google Scholar
Sánchez Almeida, J., Muñoz-Tuñón, C., Elmegreen, D. M., Elmegreen, B. G., & Méndez-Abreu, J. 2013, ApJ, 767, 74 Google Scholar
Sánchez Almeida, J., Terlevich, R., Terlevich, E., Cid Fernandes, R., & Morales-Luis, A. B. 2012, ApJ, 756, 163 Google Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van der Hulst, T. 2008, A&Ar, 15, 189 Google Scholar
Silk, J. & Mamon, G. A. 2012, Research in Astronomy and Astrophysics, 12, 917 Google Scholar
Thöne, C. C., Christensen, L., Prochaska, J. X., et al. 2014, MNRAS, 441, 2034 CrossRefGoogle Scholar
Vilchez, J. M., Pagel, B. E. J., Diaz, A. I., Terlevich, E., & Edmunds, M. G. 1988, MNRAS, 235, 633 CrossRefGoogle Scholar