Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T05:33:15.337Z Has data issue: false hasContentIssue false

The gas-loss evolution in dwarf spheroidal galaxies: Supernova feedback and environment effects in the case of the local group galaxy Ursa Minor

Published online by Cambridge University Press:  29 March 2021

Anderson Caproni
Affiliation:
Núcleo de Astrofísica, Universidade Cidade de São Paulo, R. Galvão Bueno 868, Liberdade, São Paulo, SP, 01506-000, Brazil email: anderson.caproni@cruzeirodosul.edu.br
Gustavo Amaral Lanfranchi
Affiliation:
Núcleo de Astrofísica, Universidade Cidade de São Paulo, R. Galvão Bueno 868, Liberdade, São Paulo, SP, 01506-000, Brazil email: anderson.caproni@cruzeirodosul.edu.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work, we performed two distinct non-cosmological, three-dimensional hydrodynamic simulations that evolved the gas component of a galaxy similar to the classical dwarf spheroidal galaxy Ursa Minor. Both simulations take into account types II and Ia supernovae feedback constrained by chemical evolution models, while ram-pressure stripping mechanism is added into one of them considering an intergalactic medium and a galactic velocity that resemble what is observed nowadays for the Ursa Minor galaxy. Our results show no difference in the amount of gas left inside the galaxy until 400 Myr of evolution. Moreover, the ram-pressure wind was stalled and inverted by thermal pressure of the interstellar medium and supernovae feedback during the same interval.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Caproni, A., Lanfranchi, G. A., Luiz da Silva, A., et al. 2015, ApJ, 805, 109 CrossRefGoogle Scholar
Caproni, A., Lanfranchi, G. A., Campos Baio, G. H., et al. 2017, ApJ, 838, 99 CrossRefGoogle Scholar
Emerick, A., Mac Low, M., Grcevich, J., et al. 2016, ApJ, 826, 148 10.3847/0004-637X/826/2/148CrossRefGoogle Scholar
Grcevich, J. & Putman, M. E., 2009, ApJ, 696, 385 10.1088/0004-637X/696/1/385CrossRefGoogle Scholar
Lanfranchi, G. A. & Matteucci, F. 2004, MNRAS, 351, 1338 CrossRefGoogle Scholar
Lanfranchi, G. A. & Matteucci, F. 2007, A&A, 468, 927 Google Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228 CrossRefGoogle Scholar
Piatek, S., Pryor, C., Bristow, P., et al. 2005, AJ, 130, 95 CrossRefGoogle Scholar
Ruiz, L. O., Falceta-Gonçalves, D., Lanfranchi, G.A., et al. 2013, MNRAS, 429, 1437 CrossRefGoogle Scholar
Wada, K. & Venkatesan, A. 2003, ApJ, 591, 38 CrossRefGoogle Scholar