Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T12:06:24.219Z Has data issue: false hasContentIssue false

GECKOS: Turning galaxy evolution on its side with deep observations of edge-on galaxies

Published online by Cambridge University Press:  13 February 2024

J. van de Sande*
Affiliation:
Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW, 2006, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
A. Fraser-McKelvie
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
D. B. Fisher
Affiliation:
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
M. Martig
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
M. R. Hayden
Affiliation:
Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW, 2006, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present GECKOS (Generalising Edge-on galaxies and their Chemical bimodalities, Kinematics, and Outflows out to Solar environments), a new ESO VLT/MUSE large program. The main aim of GECKOS is to reveal the variation in key physical processes of disk formation by connecting Galactic Archaeology with integral field spectroscopic observations of nearby galaxies. Edge-on galaxies are ideal for this task: they allow us to disentangle the assembly history imprinted in thick disks and provide the greatest insights into outflows. The GECKOS sample of 35 nearby edge-on disk galaxies is designed to trace the assembly histories and properties of galaxies across a large range of star formation rates, bulge-to-total ratios, and boxy and non-boxy bulges. GECKOS will deliver spatially resolved measurements of stellar abundances, ages, and kinematics, as well as ionised gas metallicities, ionisation param- eters, pressure, and inflow and outflow kinematics; all key parameters for building a complete chemodynamical picture of disk galaxies. With these data, we aim to extend Galactic analysis methods to the wider galaxy population, reaping the benefits of detailed Milky Way studies, while probing the diverse mechanisms of galaxy evolution.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529.Google Scholar
Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71.Google Scholar
Bik, A., Östlin, G., Menacho, V., et al. 2018, A&A, 619, A131.Google Scholar
Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7.Google Scholar
Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, MNRAS, 421, 872.Google Scholar
Bolatto, A. D., Warren, S. R., Leroy, A. K., et al. 2013, Nature, 499, 450.CrossRefGoogle Scholar
Bittner, A., Falcón-Barroso, J., Nedelchev, B., et al. 2019, A&A, 628, A117.Google Scholar
Bittner, A., Falcón-Barroso, J., Nedelchev, B., et al. 2019, ASCL.Google Scholar
Buck, T. 2020, MNRAS, 491, 5435.Google Scholar
Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506, 150.Google Scholar
Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765.Google Scholar
Clarke, A. J., Debattista, V. P., Nidever, D. L., et al. 2019, MNRAS, 484, 3476.Google Scholar
Comerón, S., Salo, H., & Knapen, J. H. 2018, A&A, 610, A5.Google Scholar
Cortese, L., Catinella, B., & Smith, R. 2021, PASA, 38, e035.Google Scholar
den Brok, M., Carollo, C. M., Erroz-Ferrer, S., et al. 2020, MNRAS, 491, 4089.Google Scholar
Deng, L.-C., Newberg, H. J., Liu, C., et al. 2012, RA&A, 12, 735.Google Scholar
Eigenbrot, A. & Bershady, M. A. 2018, ApJ, 853, 114.Google Scholar
Emsellem, E., Schinnerer, E., Santoro, F., et al. 2022, A&A, 659, A191.Google Scholar
Evans, T. A., Fattahi, A., Deason, A. J., & Frenk, C. S. 2020, MNRAS, 497, 4311.Google Scholar
Fisher, D. B. & Drory, N. 2011, ApJ, 733, L47.Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1.Google Scholar
Gadotti, D. A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2019, MNRAS, 482, 506.Google Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., et al. 2005, MNRAS, 362, 41.Google Scholar
Garca de la Cruz, J., Martig, M., Minchev, I., et al. 2021, MNRAS, 501, 5105.Google Scholar
Hayden, M. R., Bovy, J., Holtzman, J. A., et al. 2015, ApJ, 808, 132.Google Scholar
Haywood, M., Lehnert, M. D., Di Matteo, P., et al. 2016, A&A, 589, A66.Google Scholar
Khoperskov, S., Haywood, M., Snaith, O., et al. 2021, MNRAS, 501, 5176.Google Scholar
Krieger, N., Bolatto, A. D., Walter, F., et al. 2019, ApJ, 881, 43.Google Scholar
Kuijken, K. & Merrifield, M. R. 1995, ApJ, 443, L13.Google Scholar
Mackereth, J. T., Crain, R. A., Schiavon, R. P., et al. 2018, MNRAS, 477, 5072.Google Scholar
Makarov, D., Prugniel, P., Terekhova, N., et al. 2014, A&A, 570, A13.Google Scholar
Martig, M., Minchev, I., & Flynn, C. 2014, MNRAS, 442, 2474.Google Scholar
Martig, M., Pinna, F., Falcón-Barroso, J., et al. 2021, MNRAS, 508, 2458.Google Scholar
Martinez-Valpuesta, I. & Gerhard, O. 2013, ApJ, 766, L3.Google Scholar
Minchev, I., Martig, M., Streich, D., et al. 2015, ApJ, 804, L9.Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94.Google Scholar
Masseron, T. & Gilmore, G. 2015, MNRAS, 453, 1855.Google Scholar
Martnez-Lombilla, C., & Knapen, J. H. 2019, A&A, 629, A12.Google Scholar
Melchior, A.-L., Combes, F., & Gould, A. 2007, A&A, 462, 965.Google Scholar
Pinna, F., Falcón-Barroso, J., Martig, M., et al. 2019, A&A, 623, A19.Google Scholar
Pinna, F., Falcón-Barroso, J., Martig, M., et al. 2019, A&A, 625, A95.Google Scholar
Renaud, F., Agertz, O., Read, J. I., et al. 2021, MNRAS, 503, 5846.Google Scholar
Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8.Google Scholar
Schönrich, R., & Binney, J. 2009, MNRAS, 396, 203.Google Scholar
Scott, N., van de Sande, J., Sharma, S., et al. 2021, ApJ, 913, L11.Google Scholar
Sharma, S., Hayden, M. R., Bland-Hawthorn, J., et al. 2021, MNRAS, 506, 1761.Google Scholar
Sharma, S., Hayden, M. R., & Bland-Hawthorn, J. 2021, MNRAS, 507, 5882.Google Scholar
Sheth, K., Regan, M., Hinz, J. L., et al. 2010, PASP, 122, 1397.Google Scholar
Somerville, R. S. & Davé, R. 2015, ARA&A, 53, 51.Google Scholar
Stuber, S. K., Saito, T., Schinnerer, E., et al. 2021, A&A, 653, A172.Google Scholar
Vazdekis, A., Coelho, P., Cassisi, S., et al. 2015, MNRAS, 449, 1177.Google Scholar
Veilleux, S., Maiolino, R., Bolatto, A. D., et al. 2020, A&ARv, 28, 2.Google Scholar
Vincenzo, F., & Kobayashi, C. 2020, MNRAS, 496, 80.Google Scholar
Walcher, C. J., Coelho, P., Gallazzi, A., et al. 2009, MNRAS, 398, L44.Google Scholar
Yoachim, P., & Dalcanton, J. J. 2006, AJ, 131, 226.Google Scholar
Yoachim, P., & Dalcanton, J. J. 2008, ApJ, 683, 707.Google Scholar
Yu, S., Bullock, J. S., Gurvich, A. B., et al. 2022, arXiv:2210.03845.Google Scholar
Xiang, M., & Rix, H.-W. 2022, Nature, 603, 599. CrossRefGoogle Scholar