Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T02:26:58.787Z Has data issue: false hasContentIssue false

Global Dust Budgets of the Magellanic Clouds

Published online by Cambridge University Press:  21 March 2013

Mikako Matsuura*
Affiliation:
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom email: mikako.matsuura@ucl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within galaxies, gas and dust are constantly exchanged between stars and the interstellar medium (ISM). The life-cycle of gas and dust is the key to the evolution of galaxies. Despite its importance, it is has been very difficult to trace the life-cycle of gas and dust via observations. The Spitzer Space Telescope and Herschel Space Observatory have provided a great opportunity to study the life-cycle of the gas and dust in very nearby galaxies, the Magellanic Clouds. AGB stars are more important contributors to the dust budget in the Large Magellanic Cloud (LMC), while in the Small Magellanic Cloud (SMC), SNe are dominant. However, it seems that the current estimates of the total dust production from AGB stars is insufficient to account for dust present in the ISM. Other dust sources are needed, and supernovae are promising sources. Alternatively the time scale of dust lifetime itself needs some revisions, potentially because they could be unevenly distributed in the ISM or clumps.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bertoldi, F., Carilli, C. L., Cox, P., Fan, X., Strauss, M. A., Beelen, A., Omont, A., & Zylka, R., 2003, A&A, 406, L55Google Scholar
Buchanan, C. L., Kastner, J. H., Forrest, W. J., Hrivnak, B. J., Sahai, R., Egan, M., Frank, A., & Barnbaum, C., 2006, AJ, 132, 1890Google Scholar
Dwek, E. & Cherchneff, I., 2011 ApJ, 727, 63CrossRefGoogle Scholar
Gall, C., Hjorth, J., & Andersen, A. C., 2011, A&A Review, 19, 1Google Scholar
Gehrz, R. D., 1989, IAUS, 135, 445Google Scholar
Gomez, H. L., Krause, O., Barlow, M. J.et al., 2012, (astro-ph:1209.5677)Google Scholar
Gordon, K. D., Meixner, M., Meade, M. R., et al., 2011, AJ, 142, 102CrossRefGoogle Scholar
Jones, A. P., Tielens, A. G. G. M., Hollenbach, D. J., & McKee, C. F., 1994, ApJ, 433, 797Google Scholar
Kemper, F., Woods, P. M., Antoniou, V., et al., 2010, PASP, 122, 683CrossRefGoogle Scholar
Kozasa, T., Hasegawa, H., & Nomoto, K., 1989, ApJ 344CrossRefGoogle Scholar
Lagadec, E., Zijlstra, A. A., Sloan, G. C., et al., 2007, MNRAS, 376, 1270CrossRefGoogle Scholar
Leroy, A., Bolatto, A., Stanimirović, S., Mizuno, N., Israel, F., & Bot, C., 2007 ApJ, 658, 1027CrossRefGoogle Scholar
Matsuura, M., Barlow, M. J., Zijlstra, A. A., et al., 2009, MNRAS, 396, 918Google Scholar
Matsuura, M., Woods, P. M., & Owen, P. J., MNRAS, in pressGoogle Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., et al., 2006, AJ, 132, 2268Google Scholar
Meixner, M., Galliano, F., Hony, S., et al., 2010, A&A, 518, L71Google Scholar
Morgan, H. L. & Edmunds, M. G., 2003, MNRAS, 343, 427Google Scholar
Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., & Nomoto, K., 2003, ApJ, 598, 785CrossRefGoogle Scholar
Sloan, G. C., Kraemer, K. E., Matsuura, M., et al. 2006, ApJ, 645, 1118CrossRefGoogle Scholar
Smith, M. W. L., Gomez, H. L., Eales, S. A., et al., 2012, ApJ, 748, 123Google Scholar
Werner, M. W., Roellig, T. L., Low, F. J., et al., 2004, ApJS, 154, 1Google Scholar
Zijlstra, A. A., Matsuura, M., Wood, P. R., et al., 2006, MNRAS, 370, 1961CrossRefGoogle Scholar