Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T05:33:19.710Z Has data issue: false hasContentIssue false

Habitable planet formation in extreme planetary systems: systems with multiple stars and/or multiple planets

Published online by Cambridge University Press:  01 October 2007

Nader Haghighipour*
Affiliation:
Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the formation and dynamical evolution of habitable planets in extrasolar planetary systems is a challenging task. In this respect, systems with multiple giant planets and/or multiple stars present special complications. The formation of habitable planets in these environments is strongly affected by the dynamics of their giant planets and/or their stellar companions. These objects have profound effects on the structure of the disk of planetesimals and protoplanetary objects in which terrestrial-class planets are formed. To what extent the current theories of planet formation can be applied to such “extreme” planetary systems depends on the dynamical characteristics of their planets and/or their binary stars. In this paper, I present the results of a study of the possibility of the existence of Earth-like objects in systems with multiple giant planets (namely υ Andromedae, 47 UMa, GJ 876, and 55 Cnc) and discuss the dynamics of the newly discovered Neptune-sized object in 55 Cnc system. I will also review habitable planet formation in binary systems and present the results of a systematic search of the parameter-space for which Earth-like objects can form and maintain long-term stable orbits in the habitable zones of binary stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abe, Y., Ohtani, E., Okuchi, T., Righter, K., & Drake, M. 2000, in Origin of the Earth and the Moon, ed. Righter, K. & Canup, R. (Tucson: Univ. Arizona Press), 413CrossRefGoogle Scholar
Artymowicz, P. & Lubow, S. H. 1994, ApJ, 421, 651CrossRefGoogle Scholar
Dove, A. & Haghighipour, N. 2006, BAAS, 37, 1284Google Scholar
Els, S. G., Sterzik, M. F., Marchis, F., Pantin, E., Endl, M., & Kruster, M. 2001, A&A, 370, L1Google Scholar
Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., Laughlin, G., Henry, G. W., Abouav, D., Peek, K. M. G., Wright, J. T., Johnson, J. A., McCarthy, C., & Isaacson, H. 2008, ApJ, 675, 790.CrossRefGoogle Scholar
Haghighipour, N. 2006, ApJ, 644, 543CrossRefGoogle Scholar
Haghighipour, N. & Raymond, S. N., 2007, ApJ, 666, 436CrossRefGoogle Scholar
McArthur, B. E., Endl, M., Cochran, W. D., Benedict, G. F., Fischer, D. A., Marcy, G. W., Butler, R. P., Naef, D., Mayor, M., Queloz, D., Udry, S., & Harrison, T. E. 2004, ApJ, 614, L81CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., ValsecchiG., B. G., B., & CyrK., E. K., E. 2000, Meteorit. Planet. Sci., 35, 1309CrossRefGoogle Scholar
Quintana, E. V., Adams, F. C., Lissauer, J. J., & Chambers, J. E. 2007, ApJ, 660, 807CrossRefGoogle Scholar
Raghavan, D., Henry, T. J., Mason, B. D., Subasavage, J. P., Jao, W. C., Beaulieu, T. D., & Hambly, N. C. 2006, ApJ, 646, 523CrossRefGoogle Scholar
Rivera, E. J., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T. M., Laughlin, G., & Henry, G. W. 2005, ApJ, 634, 625CrossRefGoogle Scholar
Rivera, E. & Haghighipour, N. 2007, MNRAS, 374, 599CrossRefGoogle Scholar
Thébault, P., Marzari, F., Scholl, H., Turrini, D., & Barbieri, M. 2004, A&A, 427, 1097Google Scholar
Zucker, S., Mazeh, T., Santos, N. C., Udry, S., & Mayor, M. 2004, A&A, 426, 695Google Scholar