Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T06:40:54.146Z Has data issue: false hasContentIssue false

The Hector Survey: integral field spectroscopy of 100,000 galaxies

Published online by Cambridge University Press:  09 February 2015

J. Bland-Hawthorn*
Affiliation:
Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia email: jbh@physics.usyd.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In March 2013, the Sydney–AAO Multi-object Integral field spectrograph (SAMI) began a major survey of 3400 galaxies at the AAT, the largest of its kind to date. At the time of writing, over a third of the targets have been observed and the scientific impact has been immediate. The Manga galaxy survey has now started at the SDSS telescope and will target an even larger sample of nearby galaxies. In Australia, the community is now gearing up to deliver a major new facility called Hector that will allow integral field spectroscopy of 100 galaxies observed simultaneously. By the close of the decade, it will be possible to obtain integral field spectroscopy of 100,000 galaxies over 3000 square degrees of sky down to r=17 (median). Many of these objects will have HI imaging from the new ASKAP radio surveys. We discuss the motivation for such a survey and the use of new cosmological simulations that are properly matched to the integral field observations. The Hector survey will open up a new and unique parameter space for galaxy evolution studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Allen, J. T., et al. 2014, MNRAS submitted, arXiv:1407.6068Google Scholar
Amram, P., Le Coarer, E., Marcelin, M., et al. 1992, A&A Suppl., 94, 175Google Scholar
Bland, J., Taylor, K., & Atherton, P. D. 1987, MNRAS, 228, 595Google Scholar
Bland-Hawthorn, J., Bryant, J., Robertson, G., et al. 2011, Optics Express, 19, 2649Google Scholar
Bryant, J. J., et al. 2011, MNRAS, 415, 2173Google Scholar
Bryant, J. J., et al. 2014a, MNRAS, 438, 869CrossRefGoogle Scholar
Bryant, J. J., Owers, M. S., Robotham, A. S. G., et al. 2014b, arXiv:1407.7335Google Scholar
Cappellari, M., et al. 2011, MNRAS, 416, 1680Google Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2012, Nature, 484, 485Google Scholar
Cecil, G. 1988, ApJ, 329, 38Google Scholar
Cecil, G., Fogarty, L., Bland-Hawthorn, J., et al. 2014, ApJ, submittedGoogle Scholar
Codis, S., Pichon, C., Devriendt, J., et al. 2012, MNRAS, 427, 3320Google Scholar
Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039CrossRefGoogle Scholar
Cortese, L., Fogarty, L., Ho, I.-T., et al. 2014, ApJ, submittedGoogle Scholar
Croom, S. M., et al. 2012, MNRAS, 421, 872Google Scholar
Driver, S. P., et al. 2011, MNRAS, 413, 971Google Scholar
Dubois, Y., Pichon, C., Welker, C., et al. 2014, MNRAS, 444, 1453Google Scholar
Duffy, A. R., Meyer, M. J., Staveley-Smith, L., et al. 2012, MNRAS, 426, 3385Google Scholar
Fall, S. M. & Efstathiou, G. 1980, MNRAS, 193, 189Google Scholar
Fogarty, L. M. R., et al. 2012, ApJ, 761, 169Google Scholar
Fogarty, L. M. R., et al. 2014, MNRAS, 443, 485Google Scholar
Glazebrook, K. 2013, PASA, 30, 56Google Scholar
Goodwin, M., Heijmans, J., Saunders, I., et al. 2010, SPIE, 7739Google Scholar
Hill, G. J. 2014, Advanced Optical Technologies, 3, 265CrossRefGoogle Scholar
Ho, I., Kewley, L. J., Dopita, M. A., et al. 2014, arXiv:1407.2411Google Scholar
Jones, D. H. & Bland-Hawthorn, J. 2001, ApJ, 550, 593Google Scholar
Lawrence, J., Bland-Hawthorn, J., Bryant, J., et al. 2012, SPIE, 8446Google Scholar
Mo, H., van den Bosch, F. C., & White, S. 2010, Galaxy Formation and Evolution, CUPGoogle Scholar
Muldrew, S. I., Croton, D. J., Skibba, R. A., et al. 2012, MNRAS, 419, 2670Google Scholar
Naab, T., Oser, L., Emsellem, E., et al. 2013, arXiv:1311.0284Google Scholar
Richards, S. N., Schaefer, A. L., Lopez-Sanchez, A. R., et al. 2014, arXiv:1409.4495Google Scholar
Röttgers, B., Naab, T., & Oser, L. 2014, arXiv:1406.6696Google Scholar
Sánchez, S. F., et al. 2012, A&A, 538, A8Google Scholar
Schaye, J., Crain, R. A., Bower, R. G., et al. 2014, arXiv:1407.7040Google Scholar
Sharma, S., Steinmetz, M., & Bland-Hawthorn, J. 2012, ApJ, 750, 107Google Scholar
Sharp, R., et al. 2014, MNRAS submitted, arXiv:1407.5237Google Scholar
Trowland, H. E., Lewis, G. F., & Bland-Hawthorn, J. 2013, ApJ, 762, 72Google Scholar
York, D. G., et al. 2000, AJ, 120, 1579Google Scholar