Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:55:41.697Z Has data issue: false hasContentIssue false

Helioseismic Observations of Solar Convection Zone Dynamics

Published online by Cambridge University Press:  12 August 2011

Frank Hill
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
Rachel Howe
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
Rudi Komm
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
Irene González Hernández
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
Shukur Kholikov
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
John Leibacher
Affiliation:
National Solar Observatory, Tucson, Arizona, USA85726
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The large-scale dynamics of the solar convection zone have been inferred using both global and local helioseismology applied to data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) on board SOHO. The global analysis has revealed temporal variations of the “torsional oscillation” zonal flow as a function of depth, which may be related to the properties of the solar cycle. The horizontal flow field as a function of heliographic position and depth can be derived from ring diagrams, and shows near-surface meridional flows that change over the activity cycle. Time-distance techniques can be used to infer the deep meridional flow, which is important for flux-transport dynamo models. Temporal variations of the vorticity can be used to investigate the production of flare activity. This paper summarizes the state of our knowledge in these areas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Altrock, R., Howe, R., & Ulrich, R. K. 2008, in: Howe, R., Komm, R. W., Balasubramaniam, K. S. & Petrie, G. J. D. (eds.), Subsurface and Atmospheric Influences on Solar Activity (San Francisco: Astronomical Society of the Pacific), p. 335Google Scholar
Braun, D. C. & Birch, A. C. 2008, ApJ (Letters), 689, L161CrossRefGoogle Scholar
Dikpati, M. & Gilman, P. A. 2009, Space Sci. Revs, 144, 67CrossRefGoogle Scholar
Dikpati, M., Gilman, P. A., de Toma, G., & Ulrich, R. K. 2010, Geophys. Res. Lett 37, L14107Google Scholar
GonzálezHernández, I. Hernández, I., Howe, R., Komm, R. W., & Hill, F. 2010, ApJ (Letters), 713, L16CrossRefGoogle Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science, 327, 1350CrossRefGoogle Scholar
Howard, R. & LaBonte, B. J. 1980, ApJ (Letters), 239, L33CrossRefGoogle Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R. W., Larsen, R. M., Schou, J., Thompson, M. J., & Toomre, J. 2000, ApJ (Letters), 533, L163CrossRefGoogle Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R. W., Schou, J., & Thompson, M. J. 2009, ApJ (Letters), 701, L87CrossRefGoogle Scholar
Komm, R. W. 2007, AN, 328, 269Google Scholar
Komm, R. & Hill, F. 2009, JGR, 114, A06105CrossRefGoogle Scholar
Leibacher, J. W., Kholikov, S., & Hill, F. 2010, BAAS, 42, 823Google Scholar
Mason, D., Komm, R.Hill, F.Howe, R.Haber, D. A., & Hindman, B. W. 2006, ApJ, 645, 1543CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Nandy, D., & Martens, P. C. H.. 2009, ApJ, 698, 461CrossRefGoogle Scholar
Reinard, A. A., Henthorn, J.Komm, R., & Hill, F. 2010, ApJ (Letters), 710, L121CrossRefGoogle Scholar
Ulrich, R. K. & Boyden, J. E. 2005, ApJ (Letters), 620, L123CrossRefGoogle Scholar
Vorontsov, S. V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V. N., & Thompson, M. J. 2002, Science, 296, 101CrossRefGoogle Scholar
Walén, C. 1944, Arkiv f. Mat., Astron. o. Fys., 30A (15), 1Google Scholar