Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T16:53:19.393Z Has data issue: false hasContentIssue false

Helium stars: Towards an understanding of Wolf–Rayet evolution

Published online by Cambridge University Press:  28 July 2017

Liam A. S. McClelland
Affiliation:
Department of Physics, University of Auckland emails:lmcc054@aucklanduni.ac.nz, j.eldridge@auckland.ac.nz
J. J. Eldridge
Affiliation:
Department of Physics, University of Auckland emails:lmcc054@aucklanduni.ac.nz, j.eldridge@auckland.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observational modelling of the atmospheres of hydrogen-free Wolf–Rayet stars have indicated that their stellar surfaces are cooler than those predicted by the latest stellar evolution models. We have created a large grid of pure helium star models to investigate the dependence of the surface temperatures on factors such as the rate of mass loss and the amount of clumping in the outer convection zone. Upon comparing our results with Galactic and LMC WR observations, we find that the outer convection zones should be clumped and that the mass-loss rates need to be slightly reduced. We discuss the implications of these findings in terms of the detectability of Type Ibc supernovae progenitors, and in terms of refining the Conti scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asplund, M., Grevesse, N., Sauval, A. J., Scott, P., 2009, ARAA, 47, 481 Google Scholar
Crowther, P. A., et al., 2002, A&A, 392, 653 Google Scholar
Crowther, P. A., 2007, ARAA, 45, 177 CrossRefGoogle Scholar
Eggleton, P. P., 1971, MNRAS, 151, 351 CrossRefGoogle Scholar
Eldridge, J. J., Vink, J. S., 2006, A&A, 452, 295 Google Scholar
Eldridge, J. J. & Maund, J. R., 2016, MNRAS, 461, L117 Google Scholar
Frey, L. H., Fryer, C. L., Young, P. A., 2013, ApJ (Letters), 773, L7 Google Scholar
Gräfener, G., Owocki, S. P., Vink, J. S., 2012, A&A, 538, A40 Google Scholar
Grevesse, N., Sauval, A. J., 1998, Space Sci. Revs, 85, 161 CrossRefGoogle Scholar
Groh, J. H., Meynet, G., Georgy, C., Ekström, S., 2013, A&A, 558, A131 Google Scholar
Hainich, R. et al., 2014, A&A, 565, A27 Google Scholar
Hamann, W.-R., Gräfener, G., Liermann, A., 2006, A&A, 457, 1015 Google Scholar
McClelland, L. A. S. & Eldridge, J. J., 2016, MNRAS, 459, 1505 Google Scholar
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227 Google Scholar
Sander, A., Hamann, W.-R., Todt, H., 2012, A&A, 540, A144 Google Scholar
Stancliffe, R. J., Eldridge, J. J., 2009, MNRAS, 396, 1699 Google Scholar
Tramper, F. et al., 2013, A&A, 559, A72 Google Scholar
Tramper, F., et al., 2015, in IAU Symposium, Vol. 307, IAU Symposium, pp. 144–145Google Scholar