Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:05:18.406Z Has data issue: false hasContentIssue false

A Herschel and CARMA view of CO and [C ii] in Hickson Compact groups

Published online by Cambridge University Press:  09 February 2015

Katherine Alatalo
Affiliation:
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, California 91125, USA email: kalatalo@caltech.edu
Philip N. Appleton
Affiliation:
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, California 91125, USA
Ute Lisenfeld
Affiliation:
Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the evolution of galaxies from the starforming blue cloud to the quiescent red sequence has been revolutionized by observations taken with Herschel Space Observatory, and the onset of the era of sensitive millimeter interferometers, allowing astronomers to probe both cold dust as well as the cool interstellar medium in a large set of galaxies with unprecedented sensitivity. Recent Herschel observations of of H2-bright Hickson Compact Groups of galaxies (HCGs) has shown that [C ii] may be boosted in diffuse shocked gas. CARMA CO(1–0) observations of these [C ii]-bright HCGs has shown that these turbulent systems also can show suppression of SF. Here we present preliminary results from observations of HCGs with Herschel and CARMA, and their [C ii] and CO(1–0) properties to discuss how shocks influence galaxy transitions and star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Alatalo, K., et al. 2013, MNRAS, 432, 1796Google Scholar
Alatalo, K., et al. 2014, ApJL, in press, (arXiv:1409.2489)Google Scholar
Alatalo, K., et al. 2014, ApJ, in press, (arXiv:1409.5482)Google Scholar
Appleton, P. N., et al. 2013, ApJ, 777, 66Google Scholar
Bitsakis, T., et al. 2010, A&A, 517, 75Google Scholar
Bitsakis, T., et al. 2011, A&A, 533, 142Google Scholar
Bitsakis, T., et al. 2014, A&A, 565, 25Google Scholar
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207Google Scholar
Borthakur, S., Yun, M. S., & Verdes-Montenegro, L. 2010, ApJ, 710, 385Google Scholar
Cluver, M. E., et al. 2013, ApJ, 765, 93CrossRefGoogle Scholar
de Looze, I., et al. 2011, MNRAS, 416, 2712CrossRefGoogle Scholar
Díaz-Santos, T., et al. 2013, ApJ, 774, 68Google Scholar
Guillard, P., et al. 2012, ApJ, 749, 158Google Scholar
Hickson, P. 1997, ARA&A, 35, 357Google Scholar
Johnson, K. E., et al. 2007, AJ, 134, 1522CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Lisenfeld, U., et al. 2014, A&A, in press (arXiv:1407.4731)Google Scholar
Luhman, M. L., et al. 2003, ApJ, 594, 758Google Scholar
Malhotra, S., et al. 2001, ApJ, 561, 766CrossRefGoogle Scholar
Martinez-Badenes, V., Lisenfeld, U., Espada, D., et al. 2012, A&A, 540, A96Google Scholar
Ogle, P., Whysong, D., & Antonucci, R. 2006, ApJ, 647, 161Google Scholar
Peterson, B. W., et al. 2012, ApJ, 751, 11CrossRefGoogle Scholar
Pilbratt, G. L., et al. 2010, A&A, 518, L1Google Scholar
Poglitsch, A., et al. 2010, A&A, 518, L2Google Scholar
Rasmussen, J., et al. 2008, MNRAS, 388, 1245CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161Google Scholar
Stacey, G. J., et al. 2010, ApJ, 724, 957CrossRefGoogle Scholar
Verdes-Montenegro, L., et al. 2001, A&A, 377, 812Google Scholar
Walker, L. M., et al. 2010, AJ, 140, 1254Google Scholar
Walker, L. M., et al. 2012, AJ, 143, 69CrossRefGoogle Scholar
Walker, L. M., et al. 2013, ApJ, 775, 129Google Scholar