Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:08:17.681Z Has data issue: false hasContentIssue false

High energy processes in common envelope jets supernovae

Published online by Cambridge University Press:  28 October 2024

Aldana Grichener*
Affiliation:
Department of Physics, Technion, Haifa, 3200003, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study high energy processes that occur during the merger of a neutron star (NS) or a black hole (BH) with the core of a red supergaint (RSG). The merger powers a luminous event termed common envelope jets supernova (CEJSN), that might account for lightcurves of peculiar transients. In the CEJSN scenario the NS/BH accretes mass from its surroundings through an accretion disk as it spirals-in inside the RSG’s envelope and core. The compact object launches part of this mass as narrow jets that interact with their environment by depositing their kinetic energy in the envelope and core gas. These jets can serve as production sites of high energy neutrinos and r-process elements.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013, PRL, 111, 021103 Google Scholar
Dong, D. Z., Hallinan, G., Nakar, E., et al. 2021, Science, 373, 1125. doi: 10.1126/science.abg6037 CrossRefGoogle Scholar
Grichener, A. & Soker, N. 2019, ApJ, 878, 24. doi: 10.3847/1538-4357/ab1d5d CrossRefGoogle Scholar
Grichener, A. & Soker, N. 2021, MNRAS, 507, 1651. doi: 10.1093/mnras/stab2233 CrossRefGoogle Scholar
Grichener, A., Kobayashi, C., & Soker, N. 2022, ApJL, 926, L9. doi: 10.3847/2041-8213/ac4f68 CrossRefGoogle Scholar
Grichener, A. & Soker, N. 2022, Research Notes of the American Astronomical Society, 6, 263. doi: 10.3847/2515-5172/acaa9f Google Scholar
Grichener, A. & Soker, N. 2023, arXiv:2303.05258. doi: 10.48550/arXiv.2303.05258 CrossRefGoogle Scholar
Grichener, A. 2023, MNRAS, 523, 221. doi: 10.1093/mnras/stad1449 CrossRefGoogle Scholar
Papish, O., Soker, N., & Bukay, I. 2015, MNRAS, 449, 288. doi: 10.1093/mnras/stv345 CrossRefGoogle Scholar
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10,CrossRefGoogle Scholar
Schrøder, S. L., MacLeod, M., Loeb, A., et al. 2020, ApJ, 892, 13. doi: 10.3847/1538-4357/ab7014 CrossRefGoogle Scholar
Soker, N. & Gilkis, A. 2018, MNRAS, 475, 1198. doi: 10.1093/mnras/stx3287 CrossRefGoogle Scholar
Soker, N., Grichener, A., & Gilkis, A. 2019, MNRAS, 484, 4972. doi: 10.1093/mnras/stz364 CrossRefGoogle Scholar
Thöne, C. C., de Ugarte Postigo, A., Fryer, C. L., et al. 2011, Nature, 480, 72. doi: 10.1038/nature10611 CrossRefGoogle Scholar