Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:27:55.995Z Has data issue: false hasContentIssue false

High-Mass X-ray Binaries: progenitors of double compact objects

Published online by Cambridge University Press:  30 December 2019

Edward P. J. van den Heuvel*
Affiliation:
Anton Pannekoek Institute of Astronomy, University of Amsterdam, Postbus 92429, NL-1090GE, Amsterdam, the Netherlands email: E.P.J.vandenHeuvel@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Becklin, E. F., Kristian, J., Neugebauer, G. & Wynn-Williams, C. G. 1972, Nature Phys. Sci., 239, 130 10.1038/physci239130a0CrossRefGoogle Scholar
Begelman, M. C., King, A. R., & Pringle, J. E. 2006, MNRAS, 370, 399 10.1111/j.1365-2966.2006.10469.xCrossRefGoogle Scholar
Belczynski, K., Holz, D. E., Bulik, T., & O’Shaughnessy, B. 2016, Nature, 534, 512 CrossRefGoogle Scholar
Blaauw, A., 1961, Bull. Astr. Inst. Netherlands, 15, 265 Google Scholar
Bogomasov, A. I., 2014, Astron. Rep., 58, 126 CrossRefGoogle Scholar
Casares, J., Negueruela, I., Ribo, M., Ribas, I., Paredes, J. M., Herrero, A., & Simon-Diaz, S., 2014, Nature, 505, 378 10.1038/nature12916CrossRefGoogle Scholar
Cherepashchuk, A. M., Postnov, K. A., & Belinski, A. A. 2018, MNRAS, in press Google Scholar
Conti, P. S., Crowther, P. A., & Leitherer, C. 2008, From Luminous Hot Stars to Starburst Galaxies Cambridge University Press, Cambridge Astrophys. Series, 4510.1017/CBO9780511536199CrossRefGoogle Scholar
Corral-Santana, J. M., Casares, J., Munoz-Darias, T., Bauer, F. E., Martinez-Pais, I. G., & Russell, D. M. 2016, A&A, 587A, 61 Google Scholar
Crowther, P. A. 2007, ARAA, 45, 177 10.1146/annurev.astro.45.051806.110615CrossRefGoogle Scholar
De Loore, C., De Greve, J. P., & De Cuyper, J. P. 1975, Ap&SS, 36, 219 Google Scholar
de Mink, S. E., & Mandel, I. 2016, MNRAS, 460, 3545 CrossRefGoogle Scholar
de Mink, S. E., Cantiello, M., Langer, N., Yoon, S.-C., Brott, I., Glebbeek, E., Verkoulen, M., & Pols, O. R. 2008, Proc. IAU Symp. 252, L. Deng and K.L. Chang, eds., 365Google Scholar
Dessart, L., Burrows, A., Ott, C. D., Livne, E., Yoon, S.-C., & Langer, N. 2006, ApJ, 644, 1063 10.1086/503626CrossRefGoogle Scholar
Dincel, B., Neuhauser, R., Yerli, S. K., Ankay, A., Pannicke, A., & Sasaki, M. 2016, Sros.conf E36, online at: http://snr2016.astro.noa.gr, id.37 Google Scholar
Dubus, G., Guillard, N., Petrucci, P.-O., & Martin, P. 2017, A&A, 608, A59 Google Scholar
Esposito, P., Israel, G. L., Milisavljevic, D., Mapelli, M., Zampieri, L., Sidoli, L., & Rodriguez-Castillo, G. A., 2015, MNRAS, 482, 1112 CrossRefGoogle Scholar
Flannery, B. P. & van den Heuvel, E. P. J., 1975, A&A, 39, 61 Google Scholar
Hamann, W.-R., Gräfener, G., Liermann, A., 2006, A&A, 457, 1015 Google Scholar
Hanson, M. M., Still, M. D. & Fender, R. P., 2000, ApJ, 541, 308 CrossRefGoogle Scholar
Hillwig, T. C. & Gies, D. R., 2008, ApJ, 676, L37 CrossRefGoogle Scholar
Hjellming, R. M. & Balick, B., 1972, Nature Phys. Sci, 239, 443 CrossRefGoogle Scholar
Hulse, R. A. & Taylor, J. H., 1975, ApJ, 195, L51 CrossRefGoogle Scholar
Kaper, L., van Loon, J. Th., Augusteijn, T., Goudfrooij, P., Patat, F., Waters, L. B. F. M. & Zijlstra, A. A., 1997, ApJ, 479, L153 10.1086/310585CrossRefGoogle Scholar
Kaper, L., 2001, ASSL, 264, 125 Google Scholar
Kiing, A. R., Taam, R. E., & Begelman, M. C., 2000, ApJ, 530, L25 CrossRefGoogle Scholar
Kitaura, F. S., Janka, H.-T. & Hillebrandt, W., 2006, A&A, 450, 345 Google Scholar
Laycock, S. G. T., Maccarone, T. J. & Christodoulou, D. M., 2015, MNRAS, 452, L31 CrossRefGoogle Scholar
Lyne, A., Burgay, M., Kramer, M. 2004, Science, 303, 1153 CrossRefGoogle Scholar
Maeder, A. 1987, A&A, 178, 159 Google Scholar
Maraschi, L., Treves, A. & van den Heuvel, E. P. J. 1976, Nature, 259, 292 10.1038/259292a0CrossRefGoogle Scholar
Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., & Moriya, T. J., 2016, A&A, 588, A50 Google Scholar
Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M., de Mink, S., Mandel, Y., & Moriya, T. J. 2017, A&A, 604, A55 Google Scholar
Mirabel, I. F., Rodriguez, L. F., Cordier, B., Paul, J., & Lebrun, F. 1992, Nature, 358, 215 10.1038/358215a0CrossRefGoogle Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., Bailyn, C. D., Hartman, J. P., Macri, L., Liu, J., Pietsch, W., Remillard, R. A., Shporer, A., & Mazeh, T. 2007, Nature, 449, 872 10.1038/nature06218CrossRefGoogle Scholar
Orosz, J. A., Steeghs, D., McClintock, J. E., Torres, M. A. P., & Bochkop, I., 2009, ApJ, 697, 573 CrossRefGoogle Scholar
Orosz, J. A., McClintock, J. E., Aufdenberg, J. P., Remillard, R. A., Reid, M. J., Narayan, R., & Gou, L., 2011, ApJ, 742, 84 CrossRefGoogle Scholar
Orosz, J. A. Steiner, J. F., McClintock, J. E., Buxton, M. M., Bailyn, C. D., Steeghs, D., Guberman, A. & Torres, M. A. P., 2014, ApJ, 794, 154 10.1088/0004-637X/794/2/154CrossRefGoogle Scholar
Paczynski, B., 1976 in: Structure and Evolution of Close Binary Systems, P. Eggleton, S., Mitton and J., Whelan, eds. Dordrecht, Reidel Publ. Comp, 75Google Scholar
Parsignault, D. R., Gursky, H., Kellogg, E. M., Matilsky, T., Murray, S., Schreier, E., Tananbaum, H., Giacconi, R., & Brinkman, A. C., 1972, Nature Phys. Sci., 239, 123 10.1038/physci239123a0CrossRefGoogle Scholar
Pavlovski, K., Ivanova, N., Belczynski, K., & Van, K. X. 2017, MNRAS, 465, 2092 10.1093/mnras/stw2786CrossRefGoogle Scholar
Pfahl, E., Rappaoprt, S., Podsiadlowski, P., & Spruit, H. 2002, ApJ, 574, 364 10.1086/340794CrossRefGoogle Scholar
Podsiadlowski, P., Cannon, R. C., & Rees, M. J. 1995, MNRAS,274, 48510.1093/mnras/274.2.485CrossRefGoogle Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A., & Pfahl, E., 2004, ApJ, 612, 1044 10.1086/421713CrossRefGoogle Scholar
Postnov, K., Shakura, N., Sidoli, L., & Paizis, A. 2014, Proceedings of 10th INTEGRAL Workshop: A Synergistic View of the High-Energy Sky http://pos.sissa.it/ Google Scholar
Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., & Giacconi, R. 1972, ApJ, 172, L79 CrossRefGoogle Scholar
Shakura, N. I., Postnov, K. A., Kochetkova, A. Yu., & Hjalmarsdotter, L. 2012, MNRAS, 420, 216 10.1111/j.1365-2966.2011.20026.xCrossRefGoogle Scholar
Shenar, T., Hainich, R., Todt, H., 2016, A&A, 591, 22 Google Scholar
Sidoli, L., 2012 Proc. 9th INTEGRAL Workshop: An INTEGRAL view of the high-energy sky(the first 10 years), online at: http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176, id.11 Google Scholar
Srinivasan, G., & van den Heuvel, E. P. J. 1982, A&A, 108,143Google Scholar
Taam, R. E., 1996, in: Compact Stars in Binaries, Proc. IAU Symp. 165, J. van Paradijs, E. P. J. van den Heuvel and E. Kuulkers, eds., 3Google Scholar
Taam, R. E., Bodenheimer, P., & Ostriker, J. P., 1978, ApJ, 222, 269 10.1086/156142CrossRefGoogle Scholar
Taam, R. E. & Sandquist, E. L., 2000, ARAA, 38, 113 CrossRefGoogle Scholar
Tauris, T. M., Langer, N., & Podsiadlowski, P. 2015, MNRAS, 451, 2123 10.1093/mnras/stv990CrossRefGoogle Scholar
Tauris, T. M., Kramer, M., Freire, P. C. C. ,, 2017, ApJ, 846, 170 CrossRefGoogle Scholar
Thorne, K. S. & ytkow, A. N. 1977, ApJ, 212, 832 CrossRefGoogle Scholar
Tutukov, A. V. & Yungelson, L. R. 1973, Nautsnie Informatsie, 27, 58 Google Scholar
Valsecchi, F., Glebbeek, E., Farr, W. M., Fragos, T., Willems, B., Orosz, J., Liu, J., & Kalogera, V. 2010, Nature, 468, 77 CrossRefGoogle Scholar
van den Heuvel, E. P. J. 1968, BAN,19, 432Google Scholar
van den Heuvel, E. P. J. 1974, Proc. 16th Solvay Conf. on Physics, Univ. of Brussels Press, 119Google Scholar
van den Heuvel, E. P. J. 1976, in: Structure and Evolution of Close Binary Systems, P. Eggleton, S. Mitton and J. Whelan, eds. Dordrecht, Reidel Publ. Comp., 35Google Scholar
van den Heuvel, E. P. J. & Heise, J., 1972, Nature Phys. Sci., 239, 67 10.1038/physci239067a0CrossRefGoogle Scholar
van den Heuvel, E. P. J. & De Loore, C., 1973, A&A, 25, 387 Google Scholar
van den Heuvel, E. P. J., Portegies Zwart, S. F., Bhattacharya, D., & Kaper, L., 2001, A&A, 364, 563 Google Scholar
van den Heuvel, E. P. J., Portegies Zwart, S. F. & de Mink, S. E. 2017, MNRAS, 471, 4256 10.1093/mnras/stx1430CrossRefGoogle Scholar
van Kerkwijk, M. H., Charles, P. A., Geballe, T. R., King, D. L., Miley, G. K., Molnar, L. A., & van den Heuvel, E. P. J. 1992, Nature, 355, 703 CrossRefGoogle Scholar
Walter, R., Rodriguez, J., Foschini, L., de Plaa, J., Corbel, S., Courvoisier, T. J.-L., den Hartog, P. R., Lebrun, F., Parmar, A. N., Tomsick, J. A., & Ubertini, P., 2003, A&A, 411, L427 Google Scholar
Webster, B. L. & Murdin, P., 1972, Nature, 235, 37 CrossRefGoogle Scholar