Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T04:12:33.381Z Has data issue: false hasContentIssue false

High-resolution radiation transfer modelling of barred galaxies

Published online by Cambridge University Press:  10 June 2020

A. Nersesian
Affiliation:
National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Ioannou Metaxa and Vasileos Pavlou GR-15236, Athens, Greece email: a.nersesian@noa.gr Department of Astrophysics, Astronomy & Mechanics, Faculty of Physics, University of Athens, Panepistimiopolis, GR15784 Zografos, Athens, Greece Sterrenkundig Observatorium Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium
S. Verstocken
Affiliation:
Sterrenkundig Observatorium Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium
S. Viaene
Affiliation:
Sterrenkundig Observatorium Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
M. Baes
Affiliation:
Sterrenkundig Observatorium Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dust radiative transfer simulations provide us with the unique opportunity to study the heating mechanisms of dust by the stellar radiation field. From 2D observational images we derive the 3D distributions of stars and dust. Our aim is to analyze the contribution of the different stellar populations to the radiative dust heating processes in the nearby face-on barred galaxies NGC 1365, M 83 and M 95. We wish to decompose the FIR-submm SED and quantify the fraction directly related to star formation. To model the complex geometries mentioned above, we used SKIRT, a state-of-the-art, 3D Monte Carlo radiative transfer code designed to simulate the absorption, scattering and thermal re-emission of dust in a variety of environments. We find that the contribution of the evolved stars (8 Gyr) to the dust heating is non-negligible (∼35%) and can reach as high as 70%. We also find a tight correlation between the heating fraction by the unevolved stars (⩽ 100 Myr) and the specific star formation rate.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baes, M., Verstappen, J., De Looze, I., Fritz, J., Saftly, W., Vidal Pérez, E., Stalevski, M., Valcke, S., et al. 2011, ApJS, 196, 22CrossRefGoogle Scholar
Bendo, G. J., Baes, M., Bianchi, S., Boquien, M., Boselli, A., Cooray, A., Cortese, L., De Looze, I., et al. 2015, MNRAS, 448, 135CrossRefGoogle Scholar
Bendo, G. J., Boselli, A., Dariush, A., Pohlen, M., Roussel, H., Sauvage, M., Smith, M. W. L., Wilson, C. D., et al. 2012, MNRAS, 419, 183310.1111/j.1365-2966.2011.19735.xCrossRefGoogle Scholar
Bianchi, S., De Vis, P., Viaene, S., Nersesian, A., Mosenkov, A. V, Xilouris, E. M., Baes, M., Casasola, V., et al. 2018, ArXiv e-prints, [arXiv:1810.01208]Google Scholar
Boquien, M., Burgarella, D., Roehlly, Y., Buat, V., Ciesla, L., Corre, D., Inoue, A. K., Salas, H., et al. 2018, ArXiv e-prints, [arXiv:1811.03094]Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Calzetti, D., Wu, S.-Y., Hong, S., Kennicutt, R. C., Lee, J. C., Dale, D. A., Engelbracht, C. W., van Zee, L., et al. 2010, ApJ, 714, 1256CrossRefGoogle Scholar
Calzetti, D., Kennicutt, R. C., Engelbracht, C. W., Leitherer, C., Draine, B. T., Kewley, L., Moustakas, J., Sosey, M., et al. 2007, ApJ, 666, 870CrossRefGoogle Scholar
Camps, P. & Baes, M. 2015, Astronomy and Computing, 9, 20CrossRefGoogle Scholar
Davies, J. I, Baes, M., Bianchi, S., Jones, A., Madden, S., Xilouris, M., Bocchio, M., Casasola, V., et al. 2017, PASP, 129, 044102CrossRefGoogle Scholar
De Geyter, G., Baes, M., Camps, P., Fritz, J., De Looze, I., Hughes, T. M., Viaene, S., & Gentile, G. 2014, MNRAS, 441, 86910.1093/mnras/stu612CrossRefGoogle Scholar
De Looze, I., Fritz, J., Baes, M., Bendo, G. J., Cortese, L., Boquien, M., Boselli, A., Camps, P., et al. 2014, A&A, 571, A69Google Scholar
Groves, B., Dopita, M. A., Sutherland, R. S., Kewley, L. J., Fischera, J., Leitherer, C., Brandl, B., van Breugel, W., et al. 2008, ApJS, 176, 43810.1086/528711CrossRefGoogle Scholar
Jones, A. P., Köhler, M., Ysard, N., Bocchio, M., & Verstraete, L. 2017, A&A, 602, A46Google Scholar
Kennicutt, R. C. & Evans, N. J. 2012, ARA&A, 50, 531CrossRefGoogle Scholar
Kennicutt, R. C., Hao, C., Calzetti, D., Moustakas, J., Dale, D. A., Bendo, G., Engelbracht, C. W., Johnson, B. D., et al. 2009, ApJ, 703, 1672CrossRefGoogle Scholar
Nersesian, A., Verstocken, S., Viaene, S., Baes, M., Xilouris, E. M., Bianchi, S., Casasola, V., Clark, C. J. R., et al. 2020, A&A, Forthcoming [doi:10.1051/0004-6361/201936176]CrossRefGoogle Scholar
Nersesian, A., Xilouris, E., Bianchi, S., Galliano, F., Jones, A. P., Baes, M., Casasola, V., Cassarà, L. P., et al. 2019, A&A, 624, A80Google Scholar
Oliver, S., Frost, M., Farrah, D., Gonzalez-Solares, E., Shupe, D.L., Henriques, B., Roseboom, I., Alfonso-Luis, A., et al. 2010, MNRAS, 405, 2279Google Scholar
Popescu, C. C., Tuffs, R. J., Völk, H. J., Pierini, D., & Madore, B. F. 2002, ApJ, 567, 221CrossRefGoogle Scholar
Saftly, W., Baes, M., & Camps, P. 2014, A&A, 561, A77Google Scholar
Skibba, R. A., Engelbracht, C. W., Dale, D., Hinz, J., Zibetti, S., Crocker, A., Groves, B., Hunt, L., et al. 2011, ApJ, 738, 89CrossRefGoogle Scholar
Verstocken, S., Baes, M., Nersesian, A., Viaene, S., Bianchi, S., Casasola, V., Clark, C. J. R., Davies, J. I, et al. 2020, A&A, submittedGoogle Scholar
Viaene, S., et al. 2020, in preparationGoogle Scholar
Viaene, S., Baes, M., Tamm, A., Tempel, E., Bendo, G., Blommaert, J.A. D. L., Boquien, M., Boselli, A., et al. 2017, A&A, 599, A64Google Scholar
Viaene, S., Baes, M., Bendo, G., Boquien, M., Boselli, A., Ciesla, L., Cortese, L., De Looze, I., et al. 2016, A&A, 586, A13Google Scholar