Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:16:57.291Z Has data issue: false hasContentIssue false

The Hot Universe with XRISM and Athena

Published online by Cambridge University Press:  07 April 2020

M. Guainazzi
Affiliation:
ESTEC/ESA, Keplerlaan 1, 2201AZ Noordwijk, The Netherlands email: Matteo.Guainazzi@sciops.esa.int
M. S. Tashiro
Affiliation:
ISAS/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanazgawa 252-5210, Japan email: tashiro@astro.isas.jaxa.jp Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakawa, Saitama, Saitama 338-8570, Japan email: tashiro@phy.saitama-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray spectroscopy is key to address the theme of “The Hot Universe”, the still poorly understood astrophysical processes driving the cosmological evolution of the baryonic hot gas traceable through its electromagnetic radiation. Two future X-ray observatories: the JAXA-led XRISM (due to launch in the early 2020s), and the ESA Cosmic Vision L-class mission Athena (early 2030s) will provide breakthroughs in our understanding of how and when large-scale hot gas structures formed in the Universe, and in tracking their evolution from the formation epoch to the present day.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409CrossRefGoogle Scholar
Barret, D., et al. 2016, SPIE, 9905, 2Google Scholar
Barret, D., et al. 2018, SPIE, in press (arXiv:1807.06092)Google Scholar
Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M. 1993, MNRAS, 264, 25CrossRefGoogle Scholar
Brinkman, A. C., et al. 1987, ApL&C, 26, 73Google Scholar
Canizares, C. R., et al. 2005, PASP, 117, 1144CrossRefGoogle Scholar
Collon, M., et al. 2016, SPIE, 9905, 28Google Scholar
Croston, J. H., et al. 2013, arxiv:1306.2323Google Scholar
den Herder, J. W., et al. 2001, A&A, 365, 7Google Scholar
Ettori, S., et al. 2013, arXiv:1306.2322Google Scholar
Fabian, A. C.et al. 2000, MNRAS, 318, 65CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 455CrossRefGoogle Scholar
Hitomi Collaboration 2016, Nature, 535, 117CrossRefGoogle Scholar
Hitomi Collaboration 2017a, Nature, 551, 478CrossRefGoogle Scholar
Hitomi Collaboration 2017b, ApJ, 837, 15CrossRefGoogle Scholar
Hitomi Collaboration 2018a, PASJ, 70, 10Google Scholar
Hitomi Collaboration 2018b, PASJ, 70, 9Google Scholar
Hitomi Collaboration 2018c, PASJ, 70, 11Google Scholar
Hlavacek-Larrondo, J., et al. 2015 ApJ, 805, 3510.1088/0004-637X/805/1/35Google Scholar
Kaastra, J., et al. 2013, arXiv:1306.2324Google Scholar
Kelley, R. L., et al. 2016 SPIE, 9905, id. 99050VGoogle Scholar
JAXA 2016 Hitomi Experience Report: Investigation of Anomalies Affecting the X-ray Astronomy Satellite ‘Hitomi’ (ASTRO-H)Google Scholar
Meidinger, N., et al. 2016, SPIE, 9905, 2Google Scholar
Merloni, A., et al. 2012, arXiv:1209.3114Google Scholar
Nandra, K., et al. 2013, arXiv:1306.2307Google Scholar
Nicastro, F., Krongold, T., Mathur, S., & Elvis, M. 2017, AN, 338, 218Google Scholar
Nicastro, F.et al. 2018, arXiv:1806.08395Google Scholar
Paerels, F. B. S., & Kahn, S. M. 2003, ARA&A, 41, 291CrossRefGoogle Scholar
Pointecouteau, E., et al. 2013, arXiv:1306.2319Google Scholar
Schaye, J., et al. 2015, MNRAS, 446, 521CrossRefGoogle Scholar
Tashiro, M., et al. 2018, SPIE, in pressGoogle Scholar
Tsujimoto, M., et al. 2018, JATIS, 4, 1205Google Scholar
Werner, N., Finoguenov, A., Kaastra, J. S., Simionescu, A., Dietrich, J. P., Vink, J., & Böhringer, H. 2018, SSRv, 134, 337Google Scholar
Willingale, R., et al. 2013, arXiv:1307.1709Google Scholar