Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T02:50:50.886Z Has data issue: false hasContentIssue false

How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars

Published online by Cambridge University Press:  17 October 2017

Jérôme Guilet
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany Max-Planck Princeton Center for Plasma Physics Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/Département d’Astrophysique, CEA-Saclay, F-91191, France
Ewald Müller
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
Hans-Thomas Janka
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
Tomasz Rembiasz
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia C/ Dr. Moliner 50, 46100 Burjassot, Spain
Martin Obergaulinger
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia C/ Dr. Moliner 50, 46100 Burjassot, Spain
Pablo Cerdá-Durán
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia C/ Dr. Moliner 50, 46100 Burjassot, Spain
Miguel-Angel Aloy
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia C/ Dr. Moliner 50, 46100 Burjassot, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extremely strong magnetic fields of the order of 1015G are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collapse supernovae, and in the presence of rapid rotation may power superluminous supernovae and hypernovae associated to long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure and most likely requires an amplification over many orders of magnitude in the protoneutron star. One of the most promising agents is the magnetorotational instability (MRI), which can in principle amplify exponentially fast a weak initial magnetic field to a dynamically relevant strength. We describe our current understanding of the MRI in protoneutron stars and show recent results on its dependence on physical conditions specific to protoneutron stars such as neutrino radiation, strong buoyancy effects and large magnetic Prandtl number.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ, 584, 954 Google Scholar
Duncan, R. C. & Thompson, C. 1992, ApJL, 392, L9 CrossRefGoogle Scholar
Foglizzo, T., Kazeroni, R., Guilet, J., Masset, F., González, M. et al. 2015, PASA, 32, 9 CrossRefGoogle Scholar
Fromang, S., Papaloizou, J., Lesur, G., & Heinemann, T. 2007, A&A, 476, 1123 Google Scholar
Goodman, J., & Xu, G. 1994, ApJ, 432, 213 CrossRefGoogle Scholar
Guilet, J., Müller, E. & Janka, H. T. 2015, MNRAS, 447, 3992 CrossRefGoogle Scholar
Guilet, J. & Müller, E. 2015, MNRAS, 450, 2153 CrossRefGoogle Scholar
Guilet, J., Bauswein, A., Just, O., & Janka, H. T., 2017, submitted to MNRAS, arxiv:1610.08532Google Scholar
Inserra, C., Smartt, S. J., Jerkstrand, A., et al. 2013, ApJ, 770, 128 Google Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245 Google Scholar
Masada, Y., Sano, T., & Shibata, K. 2007, ApJ, 655, 447 CrossRefGoogle Scholar
Masada, Y., Takiwaki, T., Kotake, K., & Sano, T. 2012, ApJ, 759, 110 Google Scholar
Menou, K., Balbus, S. A., & Spruit, H. C. 2004, ApJ, 607, 564 Google Scholar
Metzger, B. D., Giannios, D., Thompson, T. A. et al. 2011, MNRAS, 413, 2031 Google Scholar
Mösta, P., Ott, C. D., Radice, D., Roberts, L. F., Schnetter, E., & Haas R., 2015, Nature, 528, 376 CrossRefGoogle Scholar
Obergaulinger, M., Cerdá-Durán, P., Müller, E., & Aloy, M. A. 2009, A&A, 498, 241 Google Scholar
Obergaulinger, M. & Aloy, M. A. 2017, MNRAS letters, 469, L43 Google Scholar
Rembiasz, T., Obergaulinger, M., Cerdá-Durán, P. et al. 2016, MNRAS, 456, 3782 CrossRefGoogle Scholar
Rembiasz, T., Guilet, J., Obergaulinger, M., Cerdá-Durán, P. et al. 2016, MNRAS, 460, 3316 CrossRefGoogle Scholar
Rembiasz, T., Obergaulinger, M., Cerdá-Durán, et al., 2016, arXiv:1611.05858Google Scholar
Sawai, H. & Yamada, S. 2014, ApJL, 784, L10 Google Scholar