No CrossRef data available.
Published online by Cambridge University Press: 20 January 2023
The hot accretion flow around Kerr black holes is strongly magnetized. Magnetic field loops sustained by a surrounding accretion disk can close within the event horizon. We performed particle-in-cell simulations in Kerr metric to capture the dynamics of the electromagnetic field and of the ambient collisionless plasma in this coupled configuration. We find that a hybrid magnetic topology develops with a closed magnetosphere co-existing with open field lines threading the horizon reminiscent of the Blandford-Znajek solution. Further in the disk, highly inclined open magnetic field lines can launch a magnetically-driven wind. While the plasma is essentially force-free, a current sheet forms above the disk where magnetic reconnection produces macroscopic plasmoids and accelerates particles up to relativistic Lorentz factors. A highly dynamic Y-point forms on the furthest closed magnetic field line, with episodic reconnection events responsible for transient synchrotron emission and coronal heating.