Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T19:01:30.816Z Has data issue: false hasContentIssue false

Ices in Starless and Starforming Cores

Published online by Cambridge University Press:  21 December 2011

Karin I. Öberg
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02139, USA
A. C. Adwin Boogert
Affiliation:
IPAC, NASA Herschel Science Center, Caltech, Pasadena, CA 91125, USA
Klaus M. Pontoppidan
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Saskia van den Broek
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
Sandrine Bottinelli
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands CESR, CNRS-UMR 5187, 9 ave. Colonel Roche, BP 4346, 31028 Toulouse Cedex 4, France
Geoffrey A. Blake
Affiliation:
Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125, USA
Neal J. Evans II
Affiliation:
Dep. of Astronomy, UT Austin, 1 University Station C1400, Austin, TX 78712, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Icy grain mantles are commonly observed through infrared spectroscopy toward dense clouds, cloud cores, protostellar envelopes and protoplanetary disks. Up to 80% of the available oxygen, carbon and nitrogen are found in such ices; the most common ice constituents – H2O, CO2 and CO – are second in abundance only to H2 in many star forming regions. In addition to being a molecular reservoir, ice chemistry is responsible for much of the chemical evolution from H2O to complex, prebiotic molecules. Combining the exisiting ISO, Spitzer, VLT and Keck ice data results in a large sample of ice sources (~80) that span all stages of star formation and a large range of protostellar luminosities (<0.1–105 L). Here we summarize the different techniques that have been applied to mine this ice data set on information on typical ice compositions in different environments and what this implies about how ices form and evolve during star and planet formation. The focus is on how to maximize the use of empirical constraints from ice observations, followed by the application of information from experiments and models. This strategy is used to identify ice bands and to constrain which ices form early during cloud formation, which form later in the prestellar core and which require protostellar heat and/or UV radiation to form. The utility of statistical tests, survival analysis and ice maps is highlighted; the latter directly reveals that the prestellar ice formation takes place in two phases, associated with H2O and CO ice formation, respectively, and that most protostellar ice variation can be explained by differences in the prestellar CO ice formation stage. Finally, special attention is paid to the difficulty of observing complex ices directly and how gas observations, experiments and models help in constraining this ice chemistry stage.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Arce, H. G., Santiago-García, J., Jørgensen, , et al. 2008, ApJl, 681, L21CrossRefGoogle Scholar
Bergin, E. A., Melnick, G. J., Gerakines, P. A., et al. 2005, ApJl, 627, L33CrossRefGoogle Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., et al. 2007b, A&A, 465, 913Google Scholar
Boogert, A. C. A. & Ehrenfreund, P. 2004, in ASP Conf. Ser. 309: Astrophysics of Dust, 547–572Google Scholar
Boogert, A. C. A., Huard, T. L., Cook, A. M., et al. 2011, ApJ, 729, 92CrossRefGoogle Scholar
Boogert, A. C. A., Pontoppidan, K. M., Knez, C., et al. 2008, ApJ, 678, 985CrossRefGoogle Scholar
Boogert, A. C. A., Pontoppidan, K. M., Lahuis, F., et al. 2004, ApJs, 154, 359CrossRefGoogle Scholar
Bottinelli, S., Adwin Boogert, A. C., Bouwman, J., et al. 2010, ApJ, 718, 1100CrossRefGoogle Scholar
Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004, ApJl, 617, L69CrossRefGoogle Scholar
Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., et al. 2003, ApJl, 593, L51CrossRefGoogle Scholar
Charnley, S. B. 2004, Advances in Space Res., 33, 23CrossRefGoogle Scholar
Charnley, S. B., Tielens, A. G. G. M., & Millar, T. J. 1992, ApJl, 399, L71CrossRefGoogle Scholar
Collings, M. P., Anderson, M. A., Chen, R., et al. 2004, MNRAS, 354, 1133CrossRefGoogle Scholar
Cook, A. M., Whittet, D. C. B., Shenoy, S. S., et al. 2011, ApJ, 730, 124CrossRefGoogle Scholar
Cuppen, H. M., van Dishoeck, E. F., Herbst, E., & Tielens, A. G. G. M. 2009, A&A, 508, 275Google Scholar
D'Hendecourt, L. B. & Jourdain de Muizon, M. 1989, A&A, 223, L5Google Scholar
Dunham, M. M., Evans, N. J., Bourke, T. L., et al. 2010, ApJ, 721, 995CrossRefGoogle Scholar
Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJs, 181, 321CrossRefGoogle Scholar
Evans, N. J. II, Allen, L. E., Blake, G. A., et al. 2003, PASP, 115, 965CrossRefGoogle Scholar
Fayolle, E. C., Öberg, K. I., Cuppen, H. M., Visser, R., & Linnartz, H. 2011, A&A, 529, A74+Google Scholar
Feigelson, E. D. & Nelson, P. I. 1985, ApJ, 293, 192CrossRefGoogle Scholar
Fraser, H. J., Bisschop, S. E., Pontoppidan, K. M., et al. 2005, MNRAS, 356, 1283CrossRefGoogle Scholar
Garrod, R. T. & Pauly, T. 2011, ArXiv e-printsGoogle Scholar
Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJs, 151, 35CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Schutte, W. A., et al. 2000, ApJ, 536, 347CrossRefGoogle Scholar
Gillett, F. C. & Forrest, W. J. 1973, ApJ, 179, 483CrossRefGoogle Scholar
Hiraoka, K., Miyagoshi, T., Takayama, T., Yamamoto, K., & Kihara, Y. 1998, ApJ, 498, 710CrossRefGoogle Scholar
Ioppolo, S., van Boheemen, Y., Cuppen, H. M. H., et al. 2011, MNRAS, 238Google Scholar
Jørgensen, J. K., Bourke, T. L., Myers, P. C., et al. 2005, ApJ, 632, 973CrossRefGoogle Scholar
Keane, J. V., Boonman, A. M. S., Tielens, A. G. G. M., et al. 2001, A&A, 376, L5Google Scholar
Kim, H. J., Evans, N. J. II, Dunham, M. M., & Lee, J. E. 2011, in IAU Symposium, 280, 216Google Scholar
Knez, C., Boogert, A. C. A., Pontoppidan, K. M., et al. 2005, ApJl, 635, L145CrossRefGoogle Scholar
Merrill, K. M., Russell, R. W., & Soifer, B. T. 1976, ApJ, 207, 763CrossRefGoogle Scholar
Oba, Y., Watanabe, N., Kouchi, A., Hama, T., & Pirronello, V. 2010, ApJl, 712, L174CrossRefGoogle Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., et al. 2008, ApJ, 678, 1032CrossRefGoogle Scholar
Öberg, K. I., Bottinelli, S., Jørgensen, J. K., & van Dishoeck, E. F. 2010, ApJ, 716, 825CrossRefGoogle Scholar
Öberg, K. I., Fayolle, E. C., Cuppen, H. M., et al. 2009a, A&A, 505, 183Google Scholar
Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 504, 891Google Scholar
Noble, J. A., Dulieu, F., Congiu, E., & Fraser, H. J. 2011, ApJ, 735, 121CrossRefGoogle Scholar
Pendleton, Y. J., Tielens, A. G. G. M., Tokunaga, A. T., et al. 1999, ApJ, 513, 294CrossRefGoogle Scholar
Pontoppidan, K. M. 2006, A&A, 453, L47Google Scholar
Pontoppidan, K. M., Boogert, A. C. A., Fraser, H. J., et al. 2008, ApJ, 678, 1005CrossRefGoogle Scholar
Pontoppidan, K. M., Dartois, E., van Dishoeck, E. F., et al. 2003a, A&A, 404, L17Google Scholar
Pontoppidan, K. M., Fraser, H. J., Dartois, E., et al. 2003b, A&A, 408, 981Google Scholar
Pontoppidan, K. M., van Dishoeck, E. F., & Dartois, E. 2004, A&A, 426, 925Google Scholar
Przybilla, N., Nieva, M., & Butler, K. 2008, ApJl, 688, L103CrossRefGoogle Scholar
Reach, W. T., Faied, D., Rho, J., et al. 2009, ApJ, 690, 683CrossRefGoogle Scholar
Sandford, S. A. & Allamandola, L. J. 1990, ApJ, 355, 357CrossRefGoogle Scholar
Schutte, W. A., Boogert, A. C. A., Tielens, A. G. G. M., et al. 1999, A&A, 343, 966Google Scholar
Shen, C. J., Greenberg, J. M., Schutte, W. A., & van Dishoeck, E. F. 2004, A&A, 415, 203Google Scholar
Spearman, C. 1904, The American Journal of Psychology, 15, pp. 72CrossRefGoogle Scholar
Tielens, A. G. G. M. & Hagen, W. 1982, A&A, 114, 245Google Scholar
Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R., & Baas, F. 1991, ApJ, 381, 181CrossRefGoogle Scholar
van der Marel, N., Öberg, K. I., Kristensen, L., et al. 2011, IAU Symposium 280, 365Google Scholar
van Broekhuizen, F. A., Keane, J. V., & Schutte, W. A. 2004, A&A, 415, 425Google Scholar
van Broekhuizen, F. A., Pontoppidan, K. M., Fraser, H. J., et al. 2005, A&A, 441, 249Google Scholar
van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D. 1995, ApJ, 447, 760CrossRefGoogle Scholar
Whittet, D. C. B., Cook, A. M., Chiar, J. E., et al. 2009, ApJ, 695, 94CrossRefGoogle Scholar
Whittet, D. C. B., Shenoy, S. S., Bergin, E. A., et al. 2007, ApJ, 655, 332CrossRefGoogle Scholar
Zasowski, G., Kemper, F., Watson, D. M., et al. 2009, ApJ, 694, 459CrossRefGoogle Scholar