Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T22:57:54.081Z Has data issue: false hasContentIssue false

Imaging the water snowline in protostellar envelopes

Published online by Cambridge University Press:  04 September 2018

Merel L. R. van ’t Hoff*
Affiliation:
Leiden Observatory, Leiden University, PO box 9513, NL-2300 RA, Leiden, the Netherlands email: vthoff@strw.leidenuniv.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determining the locations of the major snowlines in protostellar environments is crucial to fully understand the planet formation process and its outcome. Despite being located far enough from the central star to be spatially resolved with ALMA, the CO snowline remains difficult to detect directly in protoplanetary disks. Instead, its location can be derived from N2H+ emission, when chemical effects like photodissociation of CO and N2 are taken into account. The water snowline is even harder to observe than that for CO, because in disks it is located only a few AU from the protostar, and from the ground only the less abundant isotopologue H218O can be observed. Therefore, using an indirect chemical tracer, as done for CO, may be the best way to locate the water snowline. A good candidate tracer is HCO+, which is expected to be particularly abundant when its main destructor, H2O, is frozen out. Comparison of H218O and H13CO+ emission toward the envelope of the Class 0 protostar IRAS2A shows that the emission from both molecules is spatially anticorrelated, providing a proof of concept that H13CO+ can indeed be used to trace the water snowline in systems where it cannot be imaged directly.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aikawa, Y., Furya, K., Nomura, H., & Qi, C., 2015, ApJ, 807, 120Google Scholar
Ansdell, M., Williams, J. P., & van der Marel, N., 2016, ApJ, 828, 46Google Scholar
Bergin, E. A., Melnick, G. J., & Neufeld, D. A., 1998, ApJ, 499, 777Google Scholar
Bjerkeli, P., Jørgensen, J. K., Bergin, E. A., et al., 2016, A&A, 595, A39Google Scholar
Cieza, L. A., Casassus, S., Tobin, J., et al., 2016, Nature, 535, 258Google Scholar
Eistrup, C., Walsh, C., & van Dishoeck, E. F., 2016, A&A, 595, A83Google Scholar
Favre, C., Bergin, E. A., Cleeves, L. I., Hersant, F., Qi, C., & Aikawa, Y., 2015, ApJL, 802, L23Google Scholar
Herbst, E. & van Dishoeck, E. F., 2009, ARA&A, 47, 427Google Scholar
Harsono, D., Bruderer, S., & van Dishoeck, E. F., 2015, A&A, 582, A41Google Scholar
Hogerheijde, M. R. & van der Tak, F. F. S., 2000, A&A, 362, 697Google Scholar
Hogerheijde, M. R., Bergin, E. A., Brinch, E. A., et al., 2011, Science, 334, 338Google Scholar
Huang, J., Öberg, K. I., Qi, C., et al., 2017, ApJ, 835, 231Google Scholar
Ivezić, Z. & Elitzur, M., 1997, MNRAS, 287, 799Google Scholar
Jørgensen, J. K. & van Dishoeck, E. F., 2010, ApJL, 710, L72Google Scholar
Jørgensen, J. K., Visser, R., Sakai, N., et al., 2013, ApJL, 779, L22Google Scholar
Kama, M., Bruderer, S., van Dishoeck, E. F., et al., 2016, A&A, 592, A83Google Scholar
Kristensen, L. E., van Dishoeck, E. F., Bergin, E. A., et al., 2012, A&A, 542, A8Google Scholar
Madhusudhan, N., Amin, M. A., & Kennedy, G. M., 2014, ApJL, 794, L12Google Scholar
Mathews, G. S., Klaassen, P. D., Juhász, A., et al., 2013, A&A, 557, A132Google Scholar
Miotello, A., van Dishoeck, E. F., Williams, J. P., et al., 2017, A&A, 599, A113Google Scholar
Öberg, K. I., Murray-Clay, R., & Bergin, E. A., 2011, ApJL, 743, L16Google Scholar
Öberg, K. I. & Bergin, E. A., 2016, ApJL, 831, L19Google Scholar
Persson, M. V., Jørgensen, J. K., & van Dishoeck, E. F., 2012, A&A, 541, A39Google Scholar
Persson, M. V., Jørgensen, J. K., & van Dishoeck, E. F., 2013, A&A, 549, L3Google Scholar
Phillips, T. G., van Dishoeck, E. F., & Keene, J., 1992, ApJ, 399, 533Google Scholar
Qi, C., Öberg, K. I., Wilner, D. J., et al., 2013, Science, 341, 630Google Scholar
Qi, C., Öberg, K. I., Andrews, S. M., et al., 2015, ApJ, 813, 128Google Scholar
Ros, K. & Johansen, A., 2013, A&A, 552, A137Google Scholar
Schoonenberg, D. & Ormel, C. W., 2017, A&A, 602, A21Google Scholar
Schwarz, K., Bergin, E. A., Cleeves, L. I., et al., 2016, ApJ, 823, 91Google Scholar
Stevenson, D. J. & Lunine, J. I., 1988, Icarus, 75, 146Google Scholar
Taquet, V., López-Sepulcre, A., Ceccarelli, C., et al., 2013, ApJL, 768, L29Google Scholar
Taquet, V., Charnley, S. B., & Sipilä, O., 2014, ApJ, 791, 1Google Scholar
van ’t Hoff, M. L. R., Walsh, C., Kama, M., Facchini, S., & van Dishoeck, E. F., 2017, A&A, 599, A101Google Scholar
van ’t Hoff, M. L. R., Persson, M. V., Harsono, D., et al., 2017, A&A, submittedGoogle Scholar
Walsh, C., Nomura, H., & van Dishoeck, E. F., 2015, A&A, 582, A88Google Scholar
Zhang, K., Bergin, E.A., Blake, G.A., Cleeves, L.I., & Schwarz, K.R. 2017 Nat. Astron., 1, 0130Google Scholar