Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T01:55:23.962Z Has data issue: false hasContentIssue false

The Importance of Producing and Characterizing Laboratory Analogs of (Exo)Planetary Atmospheric Aerosols

Published online by Cambridge University Press:  19 March 2024

Ella Sciamma-O’Brien*
Affiliation:
NASA Ames Research Center, Space Sciences and Astrobiology Division, Moffett Field, CA 94035-0001
Sarah M. Hörst
Affiliation:
Johns Hopkins University, Department of Earth and Planetary Sciences, Baltimore, MD 21218, USA
Ted L. Roush
Affiliation:
NASA Ames Research Center, Space Sciences and Astrobiology Division, Moffett Field, CA 94035-0001
Farid Salama
Affiliation:
NASA Ames Research Center, Space Sciences and Astrobiology Division, Moffett Field, CA 94035-0001
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental studies are key to investigating the physical and chemical processes that drive cloud and haze formation from gas and solid phase molecular precursors in (exo)planetary environments, and validating the theoretical calculations used in models of (exo)planetary atmospheres. They allow characterizing the physical, optical, and chemical properties of laboratory-generated analogs, hence providing critical input parameters to models for observational data analysis. In this paper, we present examples of (1) experiments performed with different facilities to produce analogs of Titan and exoplanet atmospheric aerosols from gas phase molecular precursors, and (2) the characterization of these analogs to provide information on their composition, morphology, and optical constants to the scientific community. We also introduce the recently launched NASA Center for Optical Constants (NCOC), which will provide this critical data to the scientific community for (exo)planetary-relevant ices and organic refractory materials produced in the laboratory from the irradiation of gas and ice precursors.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barth, E. L. & Toon, O. B. 2003, Icarus, 162, 94. doi: 10.1016/S0019-1035(02)00067-2 CrossRefGoogle Scholar
Barth, E. L. 2017, Planetary and Space Science, 137, 20. doi: 10.1016/j.pss.2017.01.003 CrossRefGoogle Scholar
Barth, E. L. EPSC Abstracts, 16, EPSC2022-765. doi: 10.5194/epsc2022-765 CrossRefGoogle Scholar
Biennier, L., Benidar, A., & Salama, F. 2006, Chemical Physics, 326, 445. doi: 10.1016/j.chemphys.2006.03.016 CrossRefGoogle Scholar
Brassé, C., Muñoz, O., Coll, P., et al. 2015, Planetary and Space Science, 109, 159. doi: 10.1016/j.pss.2015.02.012 CrossRefGoogle Scholar
Cable, M. L., Höorst, S. M., Hodyss, R., et al. 2012, Chemical Reviews, 112(3), 1882. doi: 10.1021/cr200221x CrossRefGoogle Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., et al. 2007, Geophysical Research Letters, 34, L22103. doi: 10.1029/2007GL030978 Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., et al. 2009, Planetary and Space Science, 57, 1866. doi: 10.1016/j.pss.2009.05.009 CrossRefGoogle Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., et al. 2010, Faraday Discussions, 147, 293. doi: 10.1039/c004700g CrossRefGoogle Scholar
Coll, P., Navarro-González, R., Szopa, C., et al. 2013, Planetary and Space Science, 77, 91. doi: 10.1016/j.pss.2012.07.006 CrossRefGoogle Scholar
Crary, F. J., Magee, B. A., Mandt, K., et al. 2009, Planetary and Space Science, 57, 1847. doi: 10.1051/0004-6361/201118189 CrossRefGoogle Scholar
Curtis, D. B., Glandorf, D. L., Toon, O. B., et al. 2005, Journal of Physical Chemistry A, 109, 1382. doi: 10.1021/jp045596h CrossRefGoogle Scholar
Curtis, D. B., Hatch, C. D., Hasenkopf, C. A., et al. 2008, Icarus, 195, 792. doi: 10.1016/j.icarus.2008.02.003 CrossRefGoogle Scholar
Dobrijevic, M., Hébrard, E., Loison, J. C., et al. 2014, Icarus, 228, 324. doi: 10.1016/j.icarus.2013.10.015 CrossRefGoogle Scholar
Dobrijevic, M., Loison, J. C., Hickson, K. M., et al. 2016, Icarus, 268, 313. doi: 10.1016/j.icarus.2015.12.045 CrossRefGoogle Scholar
Dubois, D., Carrasco, N., Petrucciani, M., et al., 2019a, Icarus, 317, 182. doi: 10.1016/j.icarus.2018.07.006 CrossRefGoogle Scholar
Dubois, D., Carrasco, N., Bourgalais, J., et al., 2019b, The Astrophysical Journal Letters, 872, L31. doi: 10.3847/2041-8213/ab05e5 CrossRefGoogle Scholar
Dubois, D., Carrasco, N., Jovanovic, L., et al., 2020, Icarus, 338, 113437. doi: 10.1016/j.icarus.2019.113437 CrossRefGoogle Scholar
Dubois, D., Iraci, L. T., Barth, E. L., et al. 2021, The Planetary Science Journal, 2, 121. doi: 10.3847/PSJ/ac06d5 Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005, Nature, 438, 785. doi: 10.1038/nature04314 CrossRefGoogle Scholar
Gautier, T., Carrasco, N., Buch, A. et al. 2011, Icarus, 213, 625. doi: 10.1016/j.icarus.2011.04.005 CrossRefGoogle Scholar
Gautier, T., Carrasco, N., Mahjoub, A., et al. 2012, Icarus, 221, 320. doi: 10.1016/j.icarus.2012.07.025 CrossRefGoogle Scholar
Gautier, T., Sebree, J. A., Li, X., et al. 2017, Planetary and Space Science, 140, 27. doi: 10.1016/j.pss.2017.03.012 CrossRefGoogle Scholar
Gavilan Marin, L., Bejaoui, S., Haggmark, M., et al. 2020, The Astrophysical Journal, 889, 101. doi: 10.3847/1538-4357/ab62b7 CrossRefGoogle Scholar
Gavilan, L, Ho, P. J., Gorti, U., et al. 2022, The Astrophysical Journal, 925, 86. doi: 10.3847/1538-4357/ac3dfd CrossRefGoogle Scholar
Gavilan, L., Ricketts, C. L., Bejaoui, S, et al. 2022b, ACS Earth and Space Chemistry, 6, 2215. doi: 10.1021/acsearthspacechem.2c00136 CrossRefGoogle Scholar
Hadamcik, E., Reneard, J.-B., Alcouffe, G., et al. 2009, Planetary and Space Science, 57, 1631. doi: 10.1016/j.pss.2009.06.013 CrossRefGoogle Scholar
He, C. & Smith, M. A. 2014, Icarus, 238, 86. doi: 10.1016/j.icarus.2014.05.012 CrossRefGoogle Scholar
He, C., Hörst, S. M., Riemer, S., et al. 2017, The Astrophysical Journal Letters, 841, L31. doi: 10.3847/2041-8213/aa74cc CrossRefGoogle Scholar
He, C., Hörst, S. M., Lewis, N. K., et al. 2018a, The Astrophysical Journal, 156, 38. doi: 10.3847/1538-3881/aac883 Google Scholar
He, C., Hörst, S. M., Lewis, N. K., et al. 2018b, The Astrophysical Journal Letters, 856, L3. doi: 10.3847/2041-8213/aab42b CrossRefGoogle Scholar
He, C., Hörst, S. M., Lewis, N. K., et al. 2019, ACS Earth and Space Chemistry, 3, 39. doi: 10.1021/acsearthspacechem.8b00133 CrossRefGoogle Scholar
He, C., Hörst, S. M., Lewis, N. K., et al. 2020a, Nature Astronomy, 4, 986. doi: 10.1038/s41550-020-1072-9 CrossRefGoogle Scholar
He, C., Hörst, S. M., Lewis, N. K., et al. 2020b, The Planetary Science Journal, 1, 51. doi: 10.3847/PSJ/abb1a4 Google Scholar
He, C., Hörst, S. M., Radke, M., et al. 2022a, The Planetary Science Journal, 3, 25. doi: 10.3847/PSJ/ac4793 Google Scholar
He, C., Serigano, J., Hörst, S. M., et al. 2022b, ACS Earth and Space Chemistry, 6, 2295. doi: 10.1021/acsearthspacechem.2c00164 CrossRefGoogle Scholar
Hörst, S. M. 2017, Journal of Geophysical Research (Planets), 122, 432. doi: 10.1002/2016JE005240 CrossRefGoogle Scholar
Hörst, S. M. & Tolbert, M. A. 2013, The Astrophysical Journal, 770, L10. doi: 10.1088/2041-8205/770/1/L10 CrossRefGoogle Scholar
Hörst, S. M., He, C., Lewis, N. K., et al. 2018, Nature Astronomy, 2, 303. doi: 10.1038/s41550-018-0397-0 CrossRefGoogle Scholar
Khare, B. N., Sagan, C., Arakawa, E. T., et al. 1984, Icarus, 60, 127. doi: 10.1016/0019-1035(84)90142-8 CrossRefGoogle Scholar
Knutson, H. A., Dragomir, D., Kreidberg, L., et al. 2014a, The Astrophysical Journal, 794, 155. doi: 10.1088/0004-637X/794/2/155 CrossRefGoogle Scholar
Knutson, H. A., Benneke, B., Deming, D., et al. 2014b, Nature, 505, 66. doi: 10.1038/nature12887 CrossRefGoogle Scholar
Krasnopolsky, V. A. 2009, Icarus, 201, 226. doi: 10.1016/j.icarus.2008.12.038 CrossRefGoogle Scholar
Krasnopolsky, V. A. 2012, Planetary and Space Science, 73, 318. doi: 10.1016/j.pss.2012.08.013 CrossRefGoogle Scholar
Kreidberg, L., Bean, J. L., Désert, J.-M., et al. 2014, Nature, 505, 69. doi: 10.1038/nature12888 CrossRefGoogle Scholar
Lavvas, P. P., Coustenis, A., & Vardavas, I. M. 2008a, Planetary and Space Science, 56, 27. doi: 10.1016/j.pss.2007.05.026 CrossRefGoogle Scholar
Lavvas, P. P., Coustenis, A., & Vardavas, I. M. 2008b, Planetary and Space Science, 56, 67. doi: 10.1016/j.pss.2007.05.027 CrossRefGoogle Scholar
Li, J., Yu, X., Sciamma-O’Brien, E., et al. 2022, The Planetary Science Journal, 3, 2. doi: 10.3847/PSJ/ac3d27 Google Scholar
Loeffler, M. J. & Hudson, R. L. 2018, Icarus, 302, 418. doi: 10.1016/j.icarus.2017.10.041 CrossRefGoogle Scholar
Lunine, J. I. & Atreya, S. K. 2008. Nature Geoscience, 1, 159. doi: 10.1038/ngeo125 CrossRefGoogle Scholar
MacKenzie, S. M., Birch, S. P. D., Hörst, S. M., et al. 2021, The Planetary Science Journal, 2, 3. doi: 10.3847/PSJ/abf7c9 Google Scholar
Mahjoub, A., Carrasco, N., Dahoo, P.-R., et al. 2014, Plasma Processes and Polymers, 11, 409. doi: 10.1002/ppap.201300150 CrossRefGoogle Scholar
Maillard, J., Schmitz-Afonso, I., Gautier, T., et al. 2021, Icarus, 358, 114181. doi: 10.1016/j.icarus.2020.114181 CrossRefGoogle Scholar
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al. 2014, The Astrophysical Journal, 788, 111. doi: 10.1088/0004-637X/788/2/111 CrossRefGoogle Scholar
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al. 2015, The Astrophysical Journal, 812, 150. doi: 10.1088/0004-637X/812/2/150 CrossRefGoogle Scholar
Moore, M. H., Ferrante, R. F., Moore, W. J., et al. 2010, The Astrophysical Journal Supplement, 191, 96. doi: 10.1088/0067-0049/191/1/96 CrossRefGoogle Scholar
Moran, S. E., Hörst, S. M., Vuitton, V., et al. 2020, The Planetary Science Journal, 1, 17. doi: 10.3847/PSJ/ab8eae Google Scholar
Moses, J., Allen, M., & Yung, Y. L. 1992, Icarus, 99, 318. doi: 10.1016/0019-1035(92)90149-2 CrossRefGoogle Scholar
Nuevo, M., Sciamma-O’Brien, E., Sandford, S. A., et al., 2022, Icarus, 376, 114841. doi: 10.1016/j.icarus.2021.114841 CrossRefGoogle Scholar
Hong, P., Sekine, Y., Sasamori, T., et al. 2018, Icarus, 307, 25. doi: 10.1016/j.icarus.2018.02.019 CrossRefGoogle Scholar
Raulin, F., Brassé, C., Poch, O., & Coll, P. 2012, Chemical Society Reviews, 41, 5380. doi: 10.1039/C2CS35014A CrossRefGoogle Scholar
Raymond, A. W., Sciamma-O’Brien, E., Salama, F., et al. 2018, The Astrophysical Journal, 853, 107. doi: 10.3847/1538-4357/aaa12c CrossRefGoogle Scholar
Roe, H. G. 2012, Annual Review of Earth and Planetary Sciences, 40, 355. doi: 10.1146/annurev-earth-040809-152548 CrossRefGoogle Scholar
Roser, J. E., Ricca, A., Cartwright, R. J., et al. 2021, The Planetary Science Journal, 2, 240. doi: 10.3847/PSJ/ac3336 Google Scholar
Sagan, C. & Khare, B. N. 1979, Nature, 277, 102. doi: 10.1038/277102a0 CrossRefGoogle Scholar
Salama, F., Sciamma-O’Brien, E., Contreras, C. S., et al. 2018, IAU Proceedings, 13, 364. doi: 10.1017/S1743921317011619 CrossRefGoogle Scholar
Schulz, F., Maillard, J., Kaiser, K., et al. 2021, The Astrophysics Journal Letters, 908, L13. doi: 10.3847/2041-8213/abd93e CrossRefGoogle Scholar
Sciamma-O’Brien, E. & Salama, F. 2020, The Astrophysical Journal, 905, 45. doi: 10.3847/1538-4357/abc00d CrossRefGoogle Scholar
Sciamma-O’Brien, E., Carrasco, N., Szopa, C., et al. 2010, Icarus, 209, 704. doi: 10.1016/j.icarus.2010.04.009 CrossRefGoogle Scholar
Sciamma-O’Brien, E., Ricketts, C. L., & Salama, F. 2014, Icarus, 243, 325. doi: 10.1016/j.icarus.2014.08.004 CrossRefGoogle Scholar
Sciamma-O’Brien, E., Upton, K. T., & Salama, F. 2017, Icarus, 289, 214. doi: 10.1016/j.icarus.2017.02.004 CrossRefGoogle Scholar
Sciamma-O’Brien, E., Raymond, A. W., Dubois, D., et al. 2020, IAU Proceedings, S350, 465. doi: 10.1017/S1743921319009748 CrossRefGoogle Scholar
Sciamma-O’Brien, E., Barth, E., Bertrand, T., et al. 2021, EPSC Proceedings, 15, 469. doi: 10.5194/epsc2021-469 CrossRefGoogle Scholar
Sciamma-O’Brien, E., Roush, T. L., Rannou, P., et al. 2022, EPSC Proceedings, 16, 1199. doi: 10.5194/epsc2022-1199 CrossRefGoogle Scholar
Sebree, J. A., Trainer, M. G., Loeffler, M. J., et al. 2014, Icarus, 236, 146. doi: 10.1016/j.icarus.2014.03.039 CrossRefGoogle Scholar
Sebree, J. A., Roach, M. C., Shipley, E. R., et al. 2018, The Astrophysical Journal, 865, 133. doi: 10.3847/1538-4357/aadba1 CrossRefGoogle Scholar
Szopa, C., Cernogora, G., Boufendi, L., et al. 2006, Planetary and Space Science, 54, 394. doi: 10.1016/j.pss.2005.12.012 CrossRefGoogle Scholar
Trainer, M. G., Pavlov, A. A., Jimenez, J. L., et al. 2004, Geophysical Research Letters, 31, L17S08. doi: 10.1029/2004GL019859 CrossRefGoogle Scholar
Vinatier, S., Schmitt, B., Bézard, B., et al. 2018, Icarus, 310, 89. doi: 10.1016/j.icarus.2017.12.040 CrossRefGoogle Scholar
Vuitton, V., Yelle, R. V., & McEwan, M. 2007, Icarus, 191, 722. doi: 10.1016/j.icarus.2007.06.023 CrossRefGoogle Scholar
Vuitton, V., Yelle, R. V., Klippenstein, S. J., et al. 2019, Icarus, 324, 120. doi: 10.1016/j.icarus.2018.06.013 CrossRefGoogle Scholar
Waite, J. H. Jr., Young, D. T., Cravens, T. E., et al. 2007, Science, 316, 870. doi: 10.1126/science.1139727 CrossRefGoogle Scholar
Wilson, E. H. & Atreya, S. K. 2003, Planetary and Space Science, 51, 1017. doi: 10.1016/j.pss.2003.06.003 CrossRefGoogle Scholar
Yu, X., Hörst, S. M., Chao, H., et al. 2017, Journal of Geophysical Research (Planets), 122, 2610. doi: 10.1002/2017JE005437 CrossRefGoogle Scholar
Yu, X., Hörst, S. M., He, C., et al. 2018, Journal of Geophysical Research (Planets), 123, 2310. doi: 10.1029/2018JE005651 CrossRefGoogle Scholar
Yu, X., Hörst, S. M., He, C., et al. 2020a, The Astrophysical Journal, 905, 88. doi: 10.3847/1538-4357/abc55d CrossRefGoogle Scholar
Yu, X., Hörst, S. M., He, C., et al. 2020b, Earth and Planetary Science Letters, 530, 115996. doi: 10.1016/j.epsl.2019.115996 CrossRefGoogle Scholar
Yu, X., He, C., Zhang, X., et al. 2021, Nature Astronomy, 5, 822. doi: 10.1038/s41550-021-01375-3 CrossRefGoogle Scholar
Yu, X., Yu, Y., Garver, J., et al. submittedGoogle Scholar