Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T11:52:22.672Z Has data issue: false hasContentIssue false

The influence of star clusters on galactic disks: new insights in star-formation in galaxies

Published online by Cambridge University Press:  01 June 2008

Pavel Kroupa*
Affiliation:
Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany email: pavel@astro.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form in embedded star clusters which play a key role in determining the properties of a galaxy's stellar population. A large fraction of newly born massive stars are shot out from dynamically unstable embedded-cluster cores spreading them to large distances before they explode. Embedded clusters blow out their gas once the feedback energy from the new stellar population overcomes its binding energy, leading to cluster expansion and in many cases dissolution into the galaxy. Galactic disks may be thickened by such processes, and some thick disks may be the result of an early epoch of vigorous star-formation. Binary stellar systems are disrupted in clusters leading to a lower fraction of binaries in the field, while long-lived clusters harden degenerate-stellar binaries such that the SNIa rate may increase by orders of magnitude in those galaxies that were able to form long-lived clusters. The stellar initial mass function of the whole galaxy must be computed by adding the IMFs in the individual clusters. The resulting integrated galactic initial mass function (IGIMF) is top-light for SFRs < 10 M/yr, and its slope and, more importantly, its upper stellar mass limit depend on the star-formation rate (SFR), explaining naturally the mass–metallicity relation of galaxies. Based on the IGIMF theory, the re-calibrated Hα-luminosity–SFR relation implies dwarf irregular galaxies to have the same gas-depletion time-scale as major disk galaxies, implying a major change of our concept of dwarf-galaxy evolution. A galaxy transforms about 0.3 per cent of its neutral gas mass every 10 Myr into stars. The IGIMF-theory also naturally leads to the observed radial Hα cutoff in disk galaxies without a radial star-formation cutoff. It emerges that the thorough understanding of the physics and distribution of star clusters may be leading to a major paradigm shift in our understanding of galaxy evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bastian, N. 2008, MNRAS, in press (astro-ph:0807.4687)Google Scholar
Bastian, N., Emsellem, E., Kissler-Patig, M., & Maraston, C. 2006, A&A, 445, 471Google Scholar
Baumgardt, H. & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Baumgardt, H., de Marchi, G., & Kroupa, P. 2008, ApJ, in press, astro-ph/0806.0622Google Scholar
Baumgardt, H., Kroupa, P., & Parmentier, G. 2008, MNRAS, 384, 1231CrossRefGoogle Scholar
Boissier, S., et al. 2007, ApJS, 173, 524CrossRefGoogle Scholar
Clarke, C. J., & Pringle, J.E. 1992, MNRAS, 255, 423CrossRefGoogle Scholar
Davies, M. B., et al. 2006, New Astronomy, 12, 201CrossRefGoogle Scholar
de La Fuente Marcos, R. 1997, A&A, 322, 764Google Scholar
Diehl, R., et al. 2006, Nature, 439, 45CrossRefGoogle Scholar
Duchêne, G. 1999, A&A, 341, 547Google Scholar
Egusa, F., Sofue, Y., & Nakanishi, H. 2004, PASJ, 56, L45CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2006, ApJ, 650, 644CrossRefGoogle Scholar
Fellhauer, M. & Kroupa, P. 2005, ApJ, 630, 879CrossRefGoogle Scholar
Giersz, M. & Spurzem, R. 2003, MNRAS, 343, 781CrossRefGoogle Scholar
Goodwin, S. P. & Kroupa, P. 2005, A&A, 439, 565Google Scholar
Goodwin, S. P., Kroupa, P., Goodman, A., & Burkert, A. 2007, Protostars and Planets V, 133Google Scholar
Gvaramadze, V. V. & Bomans, D. J. 2008, A&A, in press, astro-ph/0809.0650Google Scholar
Heggie, D. C., Trenti, M., & Hut, P. 2006, MNRAS, 368, 677CrossRefGoogle Scholar
Hoversten, E. A. & Glazebrook, K. 2008, ApJ, 675, 163CrossRefGoogle Scholar
Ivanova, N., Belczynski, K., Fregeau, J. M., & Rasio, F. A. 2005, MNRAS, 358, 572CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Tamblyn, P., & Congdon, C. E. 1994, ApJ, 435, 22CrossRefGoogle Scholar
Kobayashi, C., Springel, V., & White, S. D. M. 2007, MNRAS, 376, 1465CrossRefGoogle Scholar
Köppen, J., Weidner, C., & Kroupa, P. 2007, MNRAS, 375, 673CrossRefGoogle Scholar
Kouwenhoven, M. B. N., Brown, A. G. A., Portegies Zwart, S. F., & Kaper, L. 2007, A&A, 474, 77Google Scholar
Kroupa, P. 1998, MNRAS, 298, 231CrossRefGoogle Scholar
Kroupa, P. 2002, MNRAS, 330, 707CrossRefGoogle Scholar
Kroupa, P. 2008, Aarseth, S., Tout, Ch., Mardling, R. (eds.), The Cambridge N-body Lectures (Lecture Notes in Physics Series, Springer Verlag), astro-ph/0803.1833Google Scholar
Kroupa, P., & Boily, C. M. 2002, MNRAS, 336, 1188CrossRefGoogle Scholar
Kroupa, P. & Weidner, C. 2003, ApJ, 598, 1076CrossRefGoogle Scholar
Kroupa, P., Aarseth, S., & Hurley, J. 2001, MNRAS, 321, 699CrossRefGoogle Scholar
Kroupa, P., Petr, M. G., & McCaughrean, M. J. 1999, New Astronomy, 4, 495CrossRefGoogle Scholar
Küpper, A. H. W., Kroupa, P., & Baumgardt, H. 2008, MNRAS, 389, 889CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, Annual Review of A&A, 41, 57CrossRefGoogle Scholar
Lada, C. J., Margulis, M., & Dearborn, D. 1984, ApJ, 285, 141CrossRefGoogle Scholar
Larsen, S. S. 2002a, AJ, 124, 1393CrossRefGoogle Scholar
Larsen, S. S. 2002b, in: Geisler, D., Grebel, E. K., & Minniti, D. (eds.), Extragalactic Star Clusters (San Francisco: Astronomical Society of the Pacific, 2002., IAUS 207), p. 421Google Scholar
Larsen, S. S. 2004a, A&A, 416, 537Google Scholar
Larsen, S. S. 2004b in: Lamers, H. J. G. L. M., Smith, L. J. & Nota, A. (eds.), The Formation and Evolution of Massive Young Star Clusters (San Francisco: Astronomical Society of the Pacific, 2004., IAUS 322,), p. 19Google Scholar
Li, Y., Klessen, R. S., & Mac Low, M.-M. 2003, ApJ, 592, 975CrossRefGoogle Scholar
Marks, M., Kroupa, P., & Baumgardt, H. 2008, MNRAS, 386, 2047CrossRefGoogle Scholar
Maschberger, T. & Clarke, C. J. 2008, (astro-ph/:0808.4089)Google Scholar
Meylan, G. & Heggie, D. C. 1997, The Astronomy and Astrophysics Review, 8, 1CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 2002, ApJ, 576, 870CrossRefGoogle Scholar
Parker, R. J. & Goodwin, S. P. 2007, MNRAS, 380, 1271CrossRefGoogle Scholar
Parmentier, G., Goodwin, S. P., Kroupa, P., & Baumgard, H. 2008, ApJ, 678, 347CrossRefGoogle Scholar
Pflamm-Altenburg, J. & Kroupa, P. 2006, MNRAS, 373, 295CrossRefGoogle Scholar
Pflamm-Altenburg, J. & Kroupa, P. 2008, Nature, in pressGoogle Scholar
Pflamm-Altenburg, J., Weidner, C., & Kroupa, P. 2007, ApJ, 671, 1550CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Makino, J. 2007, MNRAS, 374, 95CrossRefGoogle Scholar
Renaud, F., Boily, C. M., Fleck, J., Naab, T., & Theis, C. 2008, MNRAS Letters. in press, astro-ph/0809.2927Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161CrossRefGoogle Scholar
Scalo, J. M. 1986, Fundamentals of Cosmic Physics, 11, 1Google Scholar
Schilbach, E., Roeser, S. 2008, A&A, 489, 105Google Scholar
Shara, M. M., & Hurley, J. R. 2002, ApJ, 571, 830CrossRefGoogle Scholar
Trenti, M., Heggie, D. C., & Hut, P. 2007, MNRAS, 374, 344CrossRefGoogle Scholar
Vanbeveren, D. 1982, A&A, 115, 65Google Scholar
Vanbeveren, D. 1983, A&A, 124, 71Google Scholar
Vanbeveren, D. 1984, A&A, 139, 545Google Scholar
Weidner, C., & Kroupa, P. 2005, ApJ, 625, 754CrossRefGoogle Scholar
Weidner, C. & Kroupa, P. 2006, MNRAS, 365, 1333CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Larsen, S. S. 2004, MNRAS, 350, 1503CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Goodwin, S. P. 2008, in preparationGoogle Scholar
Weidner, C., Kroupa, P., Nürnberger, D. E. A., & Sterzik, M. F. 2007, MNRAS, 376, 1879CrossRefGoogle Scholar