Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T15:47:34.413Z Has data issue: false hasContentIssue false

Interferometric studies of rapid rotators

Published online by Cambridge University Press:  12 July 2011

Ming Zhao
Affiliation:
Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91101 email: ming.zhao@jpl.nasa.gov
John D. Monnier
Affiliation:
Dept. of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109
Xiao Che
Affiliation:
Dept. of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar rotation, like stellar mass and metallicity, is a fundamental property of stars. Rapid rotation distorts the stellar photosphere and affects a star's luminosity, abundances and evolution. It is also linked to stellar wind and mass loss. The distortion of the stellar photosphere due to rapid rotation causes the stellar surface brightness and effective temperature to vary with latitude, leading to a bright pole and a dark equator - a phenomenon known as ‘Gravity Darkening’. Thanks to the development of long baseline optical interferometry in recent years, optical interferometers have resolved the elongation of rapidly rotating stars, and have even imaged a few systems for the first time, directly confirming the gravity darkening effect. In this paper, we review the recent interferometric studies of rapid rotators, particularly the imaging results from CHARA-MIRC. These sub-milliarcsecond resolution observations permit the determination of the inclination, the polar and equatorial radius and temperature, as well as the fractional rotation speed of several rapid rotators with unprecedented precision. The modeling also allows the determination of the true effective temperatures and luminosities of these stars, permitting the investigation of their true locations on the HR diagram. Discrepancies from standard models were also found in some measurements, suggesting the requirement of more sophisticated mechanisms such as non-uniform rotation in the model. These observations have demonstrated that optical interferometry is now sufficiently mature to provide valuable constraints and even model-independent images to shed light on the basic physics of stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abt, H. A., Levato, H., & Grosso, M. 2002, ApJ, 573, 359CrossRefGoogle Scholar
Abt, H. A. & Morrell, N. I. 1995, ApJS, 99, 135CrossRefGoogle Scholar
Aufdenberg, J. P., Mérand, A., Coudé du Foresto, V., Absil, O. et al. 2006, ApJ, 645, 664CrossRefGoogle Scholar
Bohlin, R. C. & Gililand, R. L. 2004, AJ, 127, 3508CrossRefGoogle Scholar
Burrows, A., Dessart, L., Livne, E., Ott, C. D. et al. 2007, ApJ, 664, 416CrossRefGoogle Scholar
Claret, A. 2003, A&A, 406, 623Google Scholar
Cotton, W., Monnier, J., Baron, F., Hofmann, K.-H. et al. 2008, in: (eds.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7013Google Scholar
Cranmer, S. R. & Owocki, S. P. 1995, ApJ, 440, 308CrossRefGoogle Scholar
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667CrossRefGoogle Scholar
Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L. et al. 2003, A&A, 407, L47Google Scholar
Domiciano de Souza, A., Kervella, P., Jankov, S., Vakili, F. et al. 2005, A&A, 442, 567Google Scholar
Domiciano de Souza, A. 2009, in: Rozelot, J.-P. & Neiner, C. (eds.), The Rotation of Sun and Stars, Lecture Notes in Physics 765 (BerlinSpringer Verlag), p. 171CrossRefGoogle Scholar
Frémat, Y., Zorec, J., Hubert, A.-M., & Floquet, M. 2005, A&A, 440, 305Google Scholar
Gies, D. R., Dieterich, S., Richardson, N. D., Riedel, A. R. et al. 2008, ApJ (Letters), 682, L117CrossRefGoogle Scholar
Gizon, L. & Solanki, S. K. 2004, Solar Phys., 220, 169CrossRefGoogle Scholar
Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T. et al. 2003, AJ, 126, 2048CrossRefGoogle Scholar
Gray, R. O., Napier, M. G., & Winkler, L. I. 2001, AJ, 121, 2148CrossRefGoogle Scholar
Gulliver, A. F., Hill, G. & Adelman, S. J. 1994, ApJ (Letters), 429, L81CrossRefGoogle Scholar
Hill, G., Gulliver, A. F. & Adelman, S. J. 2004, in: Zverko, J., Ziznovsky, J., Adelman, S. J., & Weiss, W. W. (eds.), The A-Star Puzzle, IAU Symposium 224, p. 35CrossRefGoogle Scholar
Hill, G., Gulliver, A. F., & Adelman, S. J. 2010, ApJ, 712, 250CrossRefGoogle Scholar
Högbom, J. A. 1974, A&AS, 15, 417Google Scholar
Ireland, M. J., Monnier, J. D., & Thureau, N. 2006, in: (eds.), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 6268Google Scholar
Jackson, S., MacGregor, K. B., & Skumanich, A. 2004, ApJ, 606, 1196CrossRefGoogle Scholar
Jankov, S., Vakili, F., Domiciano de Souza, A. Jr., & Janot-Pacheco, E. 2001, A&A, 377, 721Google Scholar
Johnson, H. L. & Morgan, W. W. 1953, ApJ, 117, 313CrossRefGoogle Scholar
Kanaan, S., Meilland, A., Stee, P., Zorec, J. et al. 2008, A&A, 486, 785Google Scholar
Kervella, P. & Domiciano de Souza, A. 2006, A&A, 453, 1059Google Scholar
Kurucz, R. L. 1993, VizieR Online Data Catalog, 6039Google Scholar
Lucy, L. B. 1967, ZfA, 65, 89Google Scholar
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2000, ARAA, 38, 143CrossRefGoogle Scholar
Maeder, A., Meynet, G., & Ekström, S. 2007, in: Vallenari, A., Tantalo, R., Portinari, L., & Moretti, A. (eds.), From Stars to Galaxies: Building the Pieces to Build Up the Universe, ASP-CS 374, p. 13Google Scholar
MacGregor, K. B., Jackson, S., Skumanich, A., & Metcalfe, T. S. 2007, ApJ, 663, 560CrossRefGoogle Scholar
Malbet, F., et al. 2010, in: Danchi, W. C., Delplancke, F. & Rajagopal, J. K. (eds.), Optical and Infrared Interferometry, SPIE Conference Series 7734, 138Google Scholar
Mason, B. D., Martin, C., Hartkopf, W. I., Barry, D. J. et al. 1999, AJ, 117, 1890CrossRefGoogle Scholar
McAlister, H. A., ten Brummelaar, T. A., Gies, D. R., Huang, W. et al. 2005, ApJ, 628, 439CrossRefGoogle Scholar
Millward, C. G. & Walker, G. A. H. 1985, ApJS, 57, 63CrossRefGoogle Scholar
Monnier, J. D. 2003, Reports on Progress in Physics, 66, 789CrossRefGoogle Scholar
Monnier, J. D., Berger, J.-P., Millan-Gabet, R. & ten Brummelaar, T. A. 2004, in: Traub, W. A. (eds.), New Frontiers in Stellar Interferometry, SPIE Conference Series 5491, p. 1370Google Scholar
Monnier, J. D., Zhao, M., Pedretti, E., Thureau, N. et al. 2007, Science, 317, 342CrossRefGoogle Scholar
Monnier, J. D., Townsend, R. H. D., Che, X., Zhao, M. et al. 2010, ApJ, 725, 1192CrossRefGoogle Scholar
Narayan, R. & Nityananda, R. 1986, ARAA, 24, 127CrossRefGoogle Scholar
Ohishi, N., Nordgren, T. E., & Hutter, D. J. 2004, ApJ, 612, 463CrossRefGoogle Scholar
Petrov, R. G., Malbet, F., Weigelt, G., Antonelli, P. et al. 2007, A&A, 464, 1Google Scholar
Peterson, D. M., Hummel, C. A., Pauls, T. A., Armstrong, J. T. et al. 2006, Nature, 440, 896CrossRefGoogle Scholar
Pinsonneault, M. 1997, ARAA, 35, 557CrossRefGoogle Scholar
Rhee, J. H., Song, I., Zuckerman, B., & McElwain, M. 2007, ApJ, 660, 1556CrossRefGoogle Scholar
Simon, T., Ayres, T. R., Redfield, S., & Linsky, J. L. 2002, ApJ, 579, 800CrossRefGoogle Scholar
Thiébaut, E. 2008, in: Schöller, M., Danchi, W. C. & Delplancke, F. (eds.), Optical and Infrared Interferometry, SPIE Conference Series 7013, p. 43Google Scholar
Thompson, A. R., Moran, J. M., & Swenson, G. W. 1986, Interferometry and synthesis in radio astronomy, New York, Wiley-InterscienceGoogle Scholar
van Belle, G. T., Ciardi, D. R., ten Brummelaar, T., McAlister, H. A. et al. 2006, ApJ, 637, 494CrossRefGoogle Scholar
van Belle, G. T., Ciardi, D. R., Thompson, R. R., Akeson, R. L. et al. 2001, ApJ, 559, 1155CrossRefGoogle Scholar
Vinicius, M. M. F., Zorec, J., Leister, N. V., & Levenhagen, R. S. 2006, A&A, 446, 643Google Scholar
von Zeipel, H. 1924a, MNRAS, 84, 665CrossRefGoogle Scholar
von Zeipel, H. 1924b, MNRAS, 84, 684CrossRefGoogle Scholar
Wagman, N. E. 1946, AJ, 52Q, 50CrossRefGoogle Scholar
Walter, F. M., Matthews, L. D., & Linsky, J. L. 1995, ApJ, 447, 353CrossRefGoogle Scholar
Yoon, J., Peterson, D. M., Zagarello, R. J., Armstrong, J. T. et al. 2008, ApJ, 681, 570CrossRefGoogle Scholar
Zahn, J.-P., Ranc, C., & Morel, P. 2010, A&A, 517, A7+Google Scholar
Zhao, M., Gies, D., Monnier, J. D., Thureau, N. et al. 2008, ApJ (Letters), 684, L95CrossRefGoogle Scholar
Zhao, M., Monnier, J. D., Pedretti, E., Thureau, N. et al. 2009, ApJ, 701, 209CrossRefGoogle Scholar