Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T22:10:35.706Z Has data issue: true hasContentIssue false

Intermittency and Anisotropy in the Ionized Interstellar Medium

Published online by Cambridge University Press:  04 June 2018

Barney Rickett*
Affiliation:
Dept. of Electrical & Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA email: bjrickett@ucsd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of pulsars was closely followed by the discovery of dispersion and scattering in the interstellar plasma (ionized interstellar medium - IISM). The rich phenomena of scattering and scintillation have since been successfully modelled as propagation through a statistically uniform plasma turbulence with an isotropic Kolmogorov spectrum of density. However, this enticingly simple model fails to explain the many recent observations, that show anisotropic scattering from highly localized regions of the IISM often referred to as phase screens. I summarize the recent evidence from pulsars and also from very compact AGN sources, which can exhibit rapid scintillation and occasionally ESEs. The unknown astrophysical origin of these phenomena includes thin current sheets, the diffuse remnants of old supernova shells, and plasma filaments surrounding ubiquitous molecular clumps near young hot stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Armstrong, J. W., Rickett, B. J., & Spangler, S. R., 1995, ApJ, 443, 209Google Scholar
Bhat, N. D. R., Gupta, Y., & Rao, A. P., 1999, ApJ, 514, 259Google Scholar
Boldyrev, S., & Gwinn, C. R., 2003, ApJ, 584, 791CrossRefGoogle Scholar
Boldyrev, S., & Königl, S., 2006, ApJ, 640, 344Google Scholar
Bhat, N. D. R., & Cordes, J. M., et al. 2004, ApJ, 605, 759Google Scholar
Brisken, W. F., Macquart, J.-P., et al. 2010, ApJ, 708, 232Google Scholar
Clegg, A. W., Fey, A. L., & Lazio, T. J. W., 1998, ApJ, 496, 253Google Scholar
Cordes, J. M., & Lazio, T. J. W., 2001, ApJ, 549, 997Google Scholar
Cordes, J.M., Rickett, B.J., Stinebring, D.R. & Coles, W.A. 2006 ApJ, 637, 346Google Scholar
Dennett-Thorpe, J., & de Bruyn, A. G., 2003, A&A, 404, 113Google Scholar
Fiedler, R. L., Dennison, B., Johnston, K. J., & Hewish, A., 1987, Nature, 326, 675Google Scholar
Finkbeiner, D. P., 2003, ApJS, 146, 407CrossRefGoogle Scholar
Gupta, Y., & Rickett, B. J., Lyne, 1994, MNRAS, 269, 1035Google Scholar
Hemberger, D. L., & Stinebring, D. S., 2008, ApJ, 674, L37Google Scholar
Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F. & Collins, R.A. 1968 Nature, 217, 709CrossRefGoogle Scholar
Hill, A. S., & Stinebring, D. R., et al. 2005, ApJ, 619, L171Google Scholar
Jones, M. L., et al. 2017, ApJ, 841, 125Google Scholar
Kedziora-Chudczer, L., 2006, MNRAS, 369, 449CrossRefGoogle Scholar
Lam, M. T., & Cordes, J. M., et al. 2016, ApJ, 821, 66CrossRefGoogle Scholar
Lee, L. C., & Jokipii, J. R., 1976, ApJ, 206, 735Google Scholar
Narayan, R., 1992, Phil. Trans. Roy. Soc. A, 341, 151Google Scholar
Pen, U.-L., & Levin, Y., 2014, MNRAS, 442, 3338Google Scholar
Ramachandran, R., Demorest, P., D. C. Backer, Cognard, I., & Lommen, A., 2006, ApJ, 645, 303Google Scholar
Rickett, B. J., 1969, Nature, 221, 158CrossRefGoogle Scholar
Rickett, B. J., 1970, MNRAS, 150, 67CrossRefGoogle Scholar
Rickett, B. J., 1990, ARAA, 28, 561Google Scholar
Rickett, B. J., Witzel, A., et al. 2001, ApJ, 550, 11Google Scholar