Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T06:45:12.920Z Has data issue: false hasContentIssue false

Internal Structure of Stellar Clusters: Geometry of Star Formation

Published online by Cambridge University Press:  27 April 2011

Emilio J. Alfaro
Affiliation:
Instituto de Astrofísica de Andalucía, CSIC, Apdo. 3004, E-18080, Granada, Spain
Néstor Sánchez
Affiliation:
Instituto de Astrofísica de Andalucía, CSIC, Apdo. 3004, E-18080, Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of the internal structure of star clusters provides important clues concerning their formation mechanism and dynamical evolution. There are both observational and numerical evidences indicating that open clusters evolve from an initial clumpy structure, presumably a direct consequence of the formation in a fractal medium, toward a centrally condensed state. This simple picture has, however, several drawbacks. There can be very young clusters exhibiting radial patterns maybe reflecting the early effect of gravity on primordial gas. There can be also very evolved clusters showing fractal patterns that either have survived through time or have been generated subsequently by some (unknown) mechanism. Additionally, the fractal structure of some open clusters is much clumpier than the average structure of the interstellar medium in the Milky Way, although in principle a very similar structure should be expected. Here we summarize and discuss observational and numerical results concerning this subject.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Allison, R. J., Goodwin, S. P., & Parker, R. J. et al. 2009, ApJ (Letters), 700, L99CrossRefGoogle Scholar
Allison, R. J., Goodwin, S. P., & Parker, R. J. et al. 2010, MNRAS, in press (arXiv:1004.5244).Google Scholar
Bate, M. R., Clarke, C. J., & McCaughrean, M. J. 1998, MNRAS, 297, 1163CrossRefGoogle Scholar
Bazell, D. & Desert, F.X. 1988, ApJ, 333, 353CrossRefGoogle Scholar
Beech, M. 1987, Ap&SS, 133, 193Google Scholar
Beech, M. 1992, Ap&SS, 192, 103Google Scholar
Bergin, E. A. & Tafalla, M. 2007, ARAA, 45, 339CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., & Vine, S. G. 2003, MNRAS, 343, 413CrossRefGoogle Scholar
Caballero, J. A. 2008, MNRAS 383, 375CrossRefGoogle Scholar
Cartwright, A. & Whitworth, A.P. 2004, MNRAS, 348, 589CrossRefGoogle Scholar
Chappell, D. & Scalo, J. 2001, ApJ, 551, 712CrossRefGoogle Scholar
de la Fuente Marcos, R. & de la Fuente Marcos, C. 2006, A&A, 452, 163Google Scholar
de la Fuente Marcos, R. & de la Fuente Marcos, C. 2009, ApJ, 700, 436CrossRefGoogle Scholar
Dickman, R. L., Horvath, M. A., & Margulis, M. 1990, ApJ, 365, 586CrossRefGoogle Scholar
Efremov, Y.N. 1995, AJ, 110, 2757CrossRefGoogle Scholar
Elias, F., Alfaro, E. J., & Cabrera-Caño, J. 2009, MNRAS, 397, 2CrossRefGoogle Scholar
Elmegreen, B. G., 2010, IAU Symposium, 266, 3Google Scholar
Elmegreen, B. G. & Hunter, D.A. 2010, ApJ, 712, 604CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARAA, 42, 211CrossRefGoogle Scholar
Falgarone, E., Phillips, T.G., & Walker, C.K. 1991, ApJ, 378, 186CrossRefGoogle Scholar
Gieles, M. 2010, IAU Symposium, 266, 6Google Scholar
Gladwin, P. P., Kitsionas, S., & Boffin, H.M.J. et al. 1999, MNRAS, 302, 305CrossRefGoogle Scholar
Goodwin, S. P. & Whitworth, A.P. 2004, A&A, 413, 929Google Scholar
Hartmann, L. 2002, ApJ, 578, 914CrossRefGoogle Scholar
Hetem, A. Jr. & Lepine, J.R.D. 1993, A&A, 270, 451Google Scholar
Kraus, A. L. & Hillenbrand, L.A. 2008, ApJ (Letters), 686, L111CrossRefGoogle Scholar
Lada, C. J. & Lada, E.A. 2003, ARAA, 41, 57CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 809CrossRefGoogle Scholar
Larson, R. B. 1995, MNRAS, 272, 213CrossRefGoogle Scholar
Larson, R. B. 2007, Reports on Progress in Physics, 70, 337CrossRefGoogle Scholar
Lee, Y. 2004, Journal of Korean Astronomical Society, 37, 137CrossRefGoogle Scholar
Lee, Y., Kang, M., & Kim, B. K. et al. 2008, Journal of Korean Astronomical Society, 41, 157CrossRefGoogle Scholar
Maíz-Apellániz, J. 2001, ApJ, 563, 151CrossRefGoogle Scholar
Mandelbrot, B. B. 1983, in: The Fractal Geometry of Nature (New York: Freeman)CrossRefGoogle Scholar
Maschberger, T., Clarke, C. J., & Bonnell, I. A. et al. 2010, MNRAS, 404, 1061CrossRefGoogle Scholar
Moeckel, N. & Bate, M.R. 2010, MNRAS, 404, 721CrossRefGoogle Scholar
Nakajima, Y., Tachihara, K., & Hanawa, T. et al. 1998, ApJ, 497, 721CrossRefGoogle Scholar
Sánchez, N., Alfaro, E. J., & Pérez, E. 2005, ApJ, 625, 849CrossRefGoogle Scholar
Sánchez, N., Alfaro, E. J., & Pérez, E. 2007a, ApJ, 656, 222CrossRefGoogle Scholar
Sánchez, N., Alfaro, E. J., & Elias, F. et al. 2007b, ApJ, 667, 213CrossRefGoogle Scholar
Sánchez, N. & Alfaro, E. J. 2008, ApJS, 178, 1CrossRefGoogle Scholar
Sánchez, N. & Alfaro, E. J. 2009, ApJ, 696, 2086CrossRefGoogle Scholar
Schmeja, S. & Klessen, R. S. 2006, A&A, 449, 151Google Scholar
Schmeja, S., Kumar, M. S. N., & Ferreira, B. 2008, MNRAS, 389, 1209CrossRefGoogle Scholar
Simon, M. 1997, ApJ (Letters), 482, L81CrossRefGoogle Scholar
Stutzki, R. 1993, Reviews in Modern Astronomy, 6, 209Google Scholar
Vogelaar, M. G. R. & Wakker, B. P. 1994, A&A, 291, 557Google Scholar