Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:53:38.709Z Has data issue: false hasContentIssue false

The interplay between mass-loss and binarity

Published online by Cambridge University Press:  30 November 2022

Hugues Sana*
Affiliation:
Institute of Astrophysics, KU Leuven, Celestijnlaan 200D, 3001 Leuven, Belgium email: hugues.sana@kuleuven.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most stars with birth masses larger than that of our Sun belong to binary or higher order multiple systems. Similarly, most stars have stellar winds. Radiation pressure and multiplicity create outflows of material that remove mass from the primary star and inject it into the interstellar medium or transfer it to a companion. Both have strong impact on the subsequent evolution of the stars, yet they are often studied separately. In this short review, I will sketch part of the landscape of the interplay between stellar winds and binarity. I will present several examples where binarity shapes the stellar outflows, providing new opportunities to understand and measure mass loss properties. Stellar winds spectral signatures often help clearly identifying key stages of stellar evolution. The multiplicity properties of these stages then shed a new light onto evolutionary connections between the different categories of evolved stars.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abt, H. A., Gomez, A. E., & Levy, S. G. 1990, The Astrophysical Journal Supplement Series, 74, 551 CrossRefGoogle Scholar
Almeida, L. A., Sana, H., Taylor, W., et al. 2017, Astronomy & Astrophysics, 598, A84 CrossRefGoogle Scholar
Banyard, G., Sana, H., Mahy, L., et al. 2022, Astronomy & Astrophysics, 658, A69 CrossRefGoogle Scholar
Bodensteiner, J., Shenar, T., & Sana, H. 2020, Astronomy & Astrophysics, 641, A42 Google Scholar
Bordier, E., Frost, A. J., Sana, H., et al. 2022, Astronomy & Astrophysics, in press (arXiv:2203.05036)Google Scholar
Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, Astronomy & Astrophysics, 513, A115 CrossRefGoogle Scholar
Callingham, J. R., Tuthill, P. G., Pope, B. J. S., et al. 2019, Nature Astronomy, 3, 82 CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H., Paardekooper, J. P., & Gull, T. R. 2015b, Monthly Notices of the Royal Astronomical Society, 447, 2445 CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H., & Paardekooper, J. P. 2015a, Monthly Notices of the Royal Astronomical Society, 450, 1388 CrossRefGoogle Scholar
Conti, P. 1976, Mem. Soc. Roy. Sciences Liège, IX, 129Google Scholar
de Koter, A., Heap, S. R., & Hubeny, I. 1997, The Astrophysical Journal, 477, 792 Google Scholar
Decin, L., Montargès, M., Richards, A. M. S., et al. 2020, Science, 369, 1497Google Scholar
Dorda, R. & Patrick, L. R. 2021, Monthly Notices of the Royal Astronomical Society, 502, 4890 CrossRefGoogle Scholar
Dougherty, S. M., Beasley, A. J., Claussen, M. J., Zauderer, B. A., & Bolingbroke, N. J. 2005, The Astrophysical Journal, 623, 447 CrossRefGoogle Scholar
Dsilva, K., Shenar, T., Sana, H., & Marchant, P. 2020, Astronomy & Astrophysics, 641, A26 CrossRefGoogle Scholar
Dsilva, K., Shenar, T., Sana, H., & Marchant, P. 2022, Astronomy & Astrophysics, in press Duchêne, G. & Kraus, A. 2013, Ann. R. Astron. Astroph., 51, 269Google Scholar
Dunstall, P. R., Dufton, P. L., Sana, H., et al. 2015, Astronomy & Astrophysics, 580, A93 CrossRefGoogle Scholar
Grellmann, R., Preibisch, T., Ratzka, T., et al. 2013, Astronomy & Astrophysics, 550, A82 Google Scholar
Humphreys, R. M., Weis, K., Davidson, K., & Gordon, M. S. 2016, The Astrophysical Journal, 825, 64 CrossRefGoogle Scholar
Johnstone, C. P., Zhilkin, A., Pilat-Lohinger, E., et al. 2015, Astronomy & Astrophysics, Volume 577, A122 CrossRefGoogle Scholar
Karl, M., Pfuhl, O., Eisenhauer, F., et al. 2018, Astronomy & Astrophysics,strik 620, A116Google Scholar
Kee, N. D., Sundqvist, J. O., Decin, L., de Koter, A., & Sana, H. 2021, Astronomy & Astrophysics, 646, A180 CrossRefGoogle Scholar
Lamberts, A., Dubus, G., Lesur, G., & Fromang, S. 2012, Astronomy & Astrophysics, 546, A60 Google Scholar
Lamers, H. & Levesque, E. 2017, Understanding Stellar Evolution (IOP Publishing Ltd)Google Scholar
Lau, R. M., Hankins, M. J., Han, Y., et al. 2020, The Astrophysical Journal, 900, 190 CrossRefGoogle Scholar
Lührs, S. 1997, Publ. Astron. So. Pac., 109, 504 CrossRefGoogle Scholar
Madura, T. I., Gull, T. R., Okazaki, A. T., et al. 2013, Monthly Notices of the Royal Astronomical Society, 436, 3820 CrossRefGoogle Scholar
Mahy, L., Lanthermann, C., Hutsemékers, D., et al. 2022, Astronomy & Astrophysics, 657, A4 CrossRefGoogle Scholar
Moe, M. & Di Stefano, R. 2017, The Astrophysical Journal Supplement Series, 230, 15 CrossRefGoogle Scholar
Neugent, K. F., Levesque, E. M., Massey, P., Morrell, N. I., & Drout, M. R. 2020, The Astrophysical Journal, 900, 118CrossRefGoogle Scholar
Parkin, E. R. & Gosset, E. 2011, Astronomy and Astrophysics, 530, A119Google Scholar
Patrick, L. R., Lennon, D. J., Britavskiy, N., et al. 2019, Astronomy & Astrophysics, 624, A129 Patrick, L. R., Lennon, D. J., Evans, C. J., et al. 2020, Astronomy & Astrophysics, 635, A29 Pittard, J. M. 2009, Monthly Notices of the Royal Astronomical Society, 396, 1743Google Scholar
Ramírez-Tannus, M. C., Backs, F., de Koter, A., et al. 2021, Astronomy & Astrophysics, 645, L10CrossRefGoogle Scholar
Ramírez-Tannus, M. C., Kaper, L., de Koter, A., et al. 2017, Astronomy & Astrophysics, 604, A78CrossRefGoogle Scholar
Rauw, G., Vreux, J.-M., Stevens, I. R., et al. 2002, Astronomy & Astrophysics, 388, 552 Rosslowe, C. K. & Crowther, P. A. 2015, Monthly Notices of the Royal Astronomical Society, 447, 2322CrossRefGoogle Scholar
Sana, H., Stevens, I. R., Gosset, E., Rauw, G., & Vreux, J.-M. 2004, Monthly Notices of the Royal Astronomical Society, 350, 809CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444CrossRefGoogle Scholar
Sana, H., de Koter, A., de Mink, S. E., et al. 2013, Astronomy & Astrophysics, 550, A107 Sana, H., van Boeckel, T., Tramper, F., et al. 2013, Monthly Notices of the Royal Astronomical Society, 432, L26Google Scholar
Sana, H., Le Bouquin, J.-B., Lacour, S., et al. 2014, The Astrophysical Journal Supplement Series, 215, 15CrossRefGoogle Scholar
Sana, H., Ramírez-Tannus, M. C., de Koter, A., et al. 2017, Astronomy & Astrophysics, 599, L9 Shenar, T., Gilkis, A., Vink, J. S., Sana, H., & Sander, A. A. C. 2020a, Astronomy & Astrophysics, 634, A79CrossRefGoogle Scholar
Shenar, T., Sablowski, D. P., Hainich, R., et al. 2020b, Astronomy & Astrophysics, 641, C2 Shenar, T., Sana, H., Marchant, P., et al. 2021, Astronomy & Astrophysics, 650, A147 Smith, N. 2019, Monthly Notices of the Royal Astronomical Society, 489, 4378Google Scholar
Smith, N. & Tombleson, R. 2015, Monthly Notices of the Royal Astronomical Society, 447, 598 Soulain, A., Millour, F., Lopez, B., et al. 2018, Astronomy & Astrophysics, 618, A108Google Scholar
Stevens, I. R., Blondin, J. M., & Pollock, A. M. T. 1992, The Astrophysical Journal, 386, 265 Thomas, J. D., Richardson, N. D., Eldridge, J. J., et al. 2021, Monthly Notices of the Royal Astronomical Society, 504, 5221CrossRefGoogle Scholar
Thompson, S. E., Everett, M., Mullally, F., et al. 2012, The Astrophysical Journal, 753, 86 Tuthill, P. G., Monnier, J. D., & Danchi, W. C. 1999, Nature, 398, 487Google Scholar
Tuthill, P. G., Monnier, J. D., Lawrance, N., et al. 2008, The Astrophysical Journal, 675, 698 Usov, V. V. 1992, The Astrophysical Journal, 389, 635Google Scholar
Villasenñor, J. I., Taylor, W. D., Evans, C. J, et al. 2021, Monthly Notices of the Royal Astronomical Society, 507, 5348Google Scholar
Walborn, N. R., Sana, H., Simón-Díaz, S., et al. 2014, Astronomy & Astrophysics, 564, A40CrossRefGoogle Scholar