Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T02:17:48.152Z Has data issue: false hasContentIssue false

Intrinsic absorption profile and radiative cooling rate of a PAH cation revealed by action spectroscopy in the cryogenic electrostatic storage ring DESIREE

Published online by Cambridge University Press:  12 October 2020

Mark H. Stockett
Affiliation:
Department of Physics, Stockholm University, Stockholm, Sweden email: Mark.Stockett@fysik.su.se
Mikael Björkhage
Affiliation:
Department of Physics, Stockholm University, Stockholm, Sweden email: Mark.Stockett@fysik.su.se
Henrik Cederquist
Affiliation:
Department of Physics, Stockholm University, Stockholm, Sweden email: Mark.Stockett@fysik.su.se
Henning T. Schmidt
Affiliation:
Department of Physics, Stockholm University, Stockholm, Sweden email: Mark.Stockett@fysik.su.se
Zettergren Henning
Affiliation:
Department of Physics, Stockholm University, Stockholm, Sweden email: Mark.Stockett@fysik.su.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The multi-photon photodissociation (MPD) action spectrum of the coronene cation $$({{\rm{C}}_{24}}{\rm{H}}_{12}^ + )$$ has been measured as a function of storage time up to 60 s in the cryogenic electrostatic storage ring DESIREE. These measurements reveal not only the intrinsic absorption profile of isolated coronene cations, but also the rate at which hot-band absorptions are quenched by radiative cooling. The cooling rate is interpreted using a Simple Harmonic Cascade model of infrared vibrational emission.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bauschlicher, C. W., Ricca, A., Boersma, C., & Allamandola, L. J. 2018, ApJSS, 234, 32 CrossRefGoogle Scholar
Chandrasekaran, V., Kafle, B., Prabhakaran, A., et al. 2014, J. Phys. Chem. Lett., 5, 4078 CrossRefGoogle Scholar
Hansen, K., Stockett, M. H., Kaminska, M., et al. 2017, Phys. Rev. A, 95, 022511 CrossRefGoogle Scholar
Holm, A. I. S., Johansson, H. A. B., Cederquist, H., & Zettergren, H. 2011, J. Chem. Phys., 134, 044301 CrossRefGoogle Scholar
Jolliffe, I. T. 2002, Principal Component Analysis, 2nd edn., Springer Series in Statistics (Springer)Google Scholar
Kono, N., Suzuki, R., Furukawa, T., et al. 2018, Phys. Rev. A, 98, 063434 CrossRefGoogle Scholar
Mackie, C. J., Chen, T., Candian, A., Lee, T. J., & Tielens, A. G. 2018, J. Chem. Phys., 149, 134302 CrossRefGoogle Scholar
Martin, S., Bernard, J., Brédy, R., et al. 2013, Phys. Rev. Lett., 110, 063003 CrossRefGoogle Scholar
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010, A&A, 510, A36 Google Scholar
Montillaud, J., Joblin, C., & Toublanc, D. 2013, A&A, 552, A15 Google Scholar
Nesbitt, D. J., & Field, R. W. 1996, J. Phys. Chem., 100, 12735 CrossRefGoogle Scholar
Schmidt, H. T., Thomas, R. D., Gatchell, M., et al. 2013, Rev. Sci. Instrum., 84, 055115 CrossRefGoogle Scholar
Schmidt, H. T., Eklund, G., Chartkunchand, K. C., et al. 2017, Phys. Rev. Lett., 119, 073001 CrossRefGoogle Scholar
Solano, E. A., & Mayer, P. M. 2015, J. Chem. Phys., 143, 104305 CrossRefGoogle Scholar
Stockett, M. H., Björkhage, M., Cederquist, H., Schmidt, H., & Zettergren, H. 2019, Faraday Disc., 217, 126 CrossRefGoogle Scholar
Stockett, M. H., Gatchell, M., Chen, T., et al. 2015, J. Phys. Chem. Lett., 6, 4504 CrossRefGoogle Scholar
Thomas, R. D., Schmidt, H. T., Andler, G., et al. 2011, Rev. Sci. Instrum., 82, 065112 CrossRefGoogle Scholar
Tielens, A. G. G. M. 2008, ARA&A, 46, 289 CrossRefGoogle Scholar
Wolf, M., Kiefer, H. V., Langeland, J., et al. 2016, ApJ, 832, 24 CrossRefGoogle Scholar