Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T18:45:42.241Z Has data issue: false hasContentIssue false

Investigating stellar surface rotation using observations of starspots

Published online by Cambridge University Press:  05 July 2012

Heidi Korhonen*
Affiliation:
Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark email: heidi.korhonen@nbi.ku.dk Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Copenhagen, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rapid rotation enhances the dynamo operating in stars, and thus also introduces significantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed. Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable changes in the brightness of the star, and even in the shapes of the spectral line profiles, one can get information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based on starspots. I will discuss what we can obtain from ground-based photometry and how that improves with the uninterrupted, high precision, observations from space. The emphasis will be on how starspots, and even stellar surface differential rotation, can be studied using high resolution spectra.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Applegate, J. H. 1992, ApJ 385, 621CrossRefGoogle Scholar
Barnes, J. R., CollierCameron, A. Cameron, A., James, D. J., & Donati, J.-F., 2000, MNRAS 314, 162CrossRefGoogle Scholar
Barnes, J. R., CollierCameron, A. Cameron, A., Donati, J.-F., James, D. J., Marsden, S. C., & Petit, P. 2005, MNRAS 357, L1CrossRefGoogle Scholar
Barnes, S. A. 2003, ApJ 586, 464CrossRefGoogle Scholar
Brown, A., Korhonen, H., Berdyugina, S. V. et al. , 2011, in: Choudhary, D. P., & Strassmeier, K. G. (eds.), Physics of Sun and Star Spots, Proc. IAU Symposium No. 273 (Cambridge University Press), p. 78Google Scholar
Brun, A. S. & Toomre, J. 2002, ApJ 570, 865CrossRefGoogle Scholar
Donahue, R. A., Saar, S. H., & Baliunas, S. L. 1996, ApJ 466, 384CrossRefGoogle Scholar
Donati, J.-F., CollierCameron, A. Cameron, A., Semel, M. et al. , 2003, MNRAS, 345, 1187CrossRefGoogle Scholar
Dunstone, N. J., Hussain, G. A. J., Collier Cameron, A. et al. , 2008, MNRAS, 387, 1525CrossRefGoogle Scholar
Gilliland, R. L. & Dupree, A. K. 1996, ApJ (Letters) 463, L29CrossRefGoogle Scholar
Granzer, Th., Schüssler, M., Caligari, P., & Strassmeier, K. G. 2000, A&A 355, 1087Google Scholar
Frasca, A., Fröhlich, H.-E., Bonanno, A., Catanzaro, G., Biazzo, K., & Molenda-Zakowicz, J. 2011, A&A 532, A81Google Scholar
Huber, K. F., Czesla, S., Wolter, U., & Schmitt, J. H. M. M., 2010, A&A, 514, A39Google Scholar
Hussain, G. A. J. 2002, AN, 323, 349Google Scholar
Işík, E., Schüssler, M., & Solanki, S. K. 2007, A&A 464, 1049Google Scholar
Jeffers, S. V., Donati, J.-F., & Collier Cameron, A. 2007, MNRAS 375, 567CrossRefGoogle Scholar
Jeffers, S. V. & Donati, J.-F., 2009, MNRAS 390, 635CrossRefGoogle Scholar
Katsova, M. M., Livshits, M. A., Soon, W., Baliunas, S. L., & Sokoloff, D. D. 2010 New Astron. 15, 274CrossRefGoogle Scholar
Kitchatinov, L. L. & Rüdiger, G. 1999, A&A 344, 911Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 2004, AN 325, 496Google Scholar
Kloppenborg, B., Stencel, R., Monnier, J. D. et al. , 2010, Nature 464, 870CrossRefGoogle Scholar
Korhonen, H., Berdyugina, S. V., Hackman, T., Ilyin, I. V., Strassmeier, K. G., & Tuominen, I. 2007, A&A, 476, 881Google Scholar
Korhonen, H. & Elstner, D. 2011, A&A 532, A106Google Scholar
Kővári, Zs., Bartus, J., Strassmeier, K. G. et al. , 2007a, A&A 463, 1071Google Scholar
Kővári, Zs., Bartus, J., Strassmeier, K. G. et al. , 2007b, A&A 474, 165Google Scholar
Kron, G. E. 1947, PASP 59, 261CrossRefGoogle Scholar
Küker, M., Rüdiger, G., & Kitchatinov, L. L. 2011, A&A 530, A48Google Scholar
Lanza, A. F., Pagano, I., Leto, G. et al. , 2009, A&A 493, 193Google Scholar
Marsden, S. C., Waite, I. A., Carter, B. D., & Donati, J.-F., 2005, MNRAS 359, 711CrossRefGoogle Scholar
Marsden, S. C., Donati, J.-F., Semel, M., Petit, P., & Carter, B. D. 2006, MNRAS 370, 468CrossRefGoogle Scholar
Marsden, S. C., Jardine, M. M., Ramirez Vélez, J. C. et al. , 2011, MNRAS, 413 1939CrossRefGoogle Scholar
Meibom, S., Barnes, S. A., Latham, D. W. et al. , 2011, ApJ (Letters) 733, L9CrossRefGoogle Scholar
Messina, S., & Guinan, E. F. 2003, A&A 409, 1017Google Scholar
Micela, G., Sciortino, S., Serio, S. et al. , 1985, ApJ 292, 172CrossRefGoogle Scholar
Monnier, J. D., Zhao, M., Pedretti, E. et al. , 2007, Science 317, 342CrossRefGoogle Scholar
Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984, ApJ 287, 769CrossRefGoogle Scholar
Oláh, K., Kolláth, Z., & Strassmeier, K. G. 2000, A&A 356, 643Google Scholar
Pallavicini, R., Golub, L., Rosner, R et al. , 1981, ApJ 248, 279CrossRefGoogle Scholar
Petit, P., Donati, J.-F., & Collier Cameron, A. 2002, MNRAS 334, 374CrossRefGoogle Scholar
Piskunov, N. E., Tuominen, I., & Vilhu, O. 1990, A&A 230, 363Google Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A 397, 147Google Scholar
Queloz, D., Henry, G. W., Sivan, J. P. et al. , 2001 A&A 379, 279Google Scholar
Reiners, A., & Schmitt, J. H. M. M., 2003 A&A 398, 647Google Scholar
Rice, J. B. & Strassmeier, K. G. 1996, A&A 316, 164Google Scholar
Rüdiger, G., Krause, F., Tuominen, I., & Virtanen, H. 1986, A&A 166, 306Google Scholar
Rucinski, S. M., Walker, G. A. H., Matthews, J. M. et al. , 2004, PASP 116, 1093CrossRefGoogle Scholar
Saar, S. H. & Baliunas, S. L. 1992, in: Harvey, K. L. (ed), The Solar Cycle, Proceedings of the NSO/Sac Peak 12th Summer Workshop (Fourth Solar Cycle Workshop) (ASP Conf. Series, Vol. 27), p. 150Google Scholar
Saar, S. H. & Brandenburg, A. 1999, ApJ 524, 295CrossRefGoogle Scholar
Saar, S. 2011, in: Choudhary, D. P., & Strassmeier, K. G. (eds.), Physics of Sun and Star Spots, Proc. IAU Symposium No. 273 (Cambridge University Press), p. 61Google Scholar
Silva-Valio, A., Lanza, A. F., Alonso, R., & Barge, P. 2010, A&A 510, A25Google Scholar
Siwak, M., Rucinski, S. M., Matthews, J. M. et al. , 2011, MNRAS 415, 1119CrossRefGoogle Scholar
Skelly, M. B., Donati, J.-F., Bouvier, J. et al. , 2010, MNRAS 403, 159CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ 171, 565CrossRefGoogle Scholar
Schüssler, M., Solanki, S. K. 1992, A&A 264, L135Google Scholar
Strassmeier, K. G., Bartus, J., Cutispoto, G., & Rodono, M. 1997, A&AS 125, 11Google Scholar
Strassmeier, K. G. 1999, A&A 347, 225Google Scholar
Strassmeier, K. G. 2009, Astronomy & Astrophysics Review 17, 251CrossRefGoogle Scholar
Thompson, M. J., Toomre, J., Anderson, E. R. et al. , 1996, Science 272, 1300CrossRefGoogle Scholar
Vogt, S. S., Penrod, G., & Donald, , Hatzes, A. P. 1987, ApJ 321, 496CrossRefGoogle Scholar
Vogt, S. S., Hatzes, A. P., Misch, A., & Kürster, M. 1999, ApJS, 121, 546CrossRefGoogle Scholar
Weber, M. & Strassmeier, K. G. 2001, A&A 373, 974Google Scholar
Weber, M., Strassmeier, K. G., & Washuettl, A. 2005, AN, 326, 287Google Scholar
Weber, M. 2007, AN 328, 1075Google Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W. 2011, ApJ in press, arXiv1109.4634Google Scholar