Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:09:31.001Z Has data issue: false hasContentIssue false

ISOSCELES: Grid of stellar atmosphere and hydrodynamic models of massive stars. The first results

Published online by Cambridge University Press:  16 August 2023

Ignacio Araya
Affiliation:
Vicerrectoría de Investigación, Universidad Mayor, Chile
Michel Curé
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Natalia Machuca
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Catalina Arcos
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work we seek to derive simultaneously the stellar and wind parameters of massive stars, mainly A and B type supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the micro-turbulence velocity and, silicon abundance. For wind properties we consider the line–force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the hydrodynamic solutions derived with the stationary code Hydwind. Then, ISOSCELES, a grid of stellar atmosphere and hydrodynamic models of massive stars is created. Together with the observed spectra and a semi-automatic tool the physical properties from these stars are determined through spectral line fittings. This quantitative spectroscopic analysis provide an estimation about the line–force parameters. In addition, we confirm that the hydrodynamic solutions, called δ-slow solutions, describe quite reliable the radiation line-driven winds of B supergiant stars.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 10.1086/153315CrossRefGoogle Scholar
Curé, M. 2004, ApJ, 614, 929 10.1086/423776CrossRefGoogle Scholar
Curé, M., Cidale, L., & Granada, A. 2011, ApJ, 737, 18 10.1088/0004-637X/737/1/18CrossRefGoogle Scholar
Ekström, et al., 2008, A&A, 489, 685 10.1051/0004-6361:200809633CrossRefGoogle Scholar
Friend, D. B., & Abbott, D. C. 1986, ApJ, 311, 701 10.1086/164809CrossRefGoogle Scholar
Gormaz-Matamala, A. C., Curé, M., Cidale, L. S., & Venero, R. O. J. 2019, ApJ, 873, 131 10.3847/1538-4357/ab05c4CrossRefGoogle Scholar
Haucke, M., Cidale, L. S., Venero, R. O. J., Curé, M., Kraus, M., Kanaan, S., & Arcos, C. 2018, A&A, 614, A91 10.1051/0004-6361/201731678CrossRefGoogle Scholar
Puls, J., Springmann, U., & Lennon, M. 2000, A&AS, 141, 23 10.1051/aas:2000312CrossRefGoogle Scholar
Puls, J., Urbaneja, M. A., Venero, R., Repolust, T., Springmann, U., Jokuthy, A., & Mokiem, M. R. 2005, A&A, 435, 669 10.1051/0004-6361:20042365CrossRefGoogle Scholar
Simón-Díaz, S., & Herrero, A. 2014, A&A, 562, A135 10.1051/0004-6361/201322758CrossRefGoogle Scholar