Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T22:43:45.128Z Has data issue: false hasContentIssue false

Isotopic fractionation in interstellar molecules

Published online by Cambridge University Press:  04 September 2018

Kenji Furuya*
Affiliation:
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennoudai, 305-8577 Tsukuba, Japan email: furuya@ccs.tsukuba.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The level of isotopic fractionation in molecules provides insights into their formation environments and how they formed. In this article, we review hydrogen and nitrogen isotopic fractionation in low-mass star-forming regions. Interstellar molecules are significantly enriched in deuterium. The importance of the nuclear spin states of light species on deuterium fractionation and the usefulness of singly and doubly deuterated molecules as chemical tracers are discussed. Observations have revealed that molecules in prestellar cores are enriched in or depleted in 15N depending on molecules. Compared with deuterium fractionation chemistry, our understanding of 15N fractionation chemistry is not well established. We briefly discuss potential 15N fractionation routes, i.e., isotopic-exchange reactions and isotopic selective photodissociation of N2. In addition, the selective freeze-out of 15N atoms onto dust grains around the transition between N atoms and N2 is discussed as a potential mechanism that causes the depletion of 15N in the gas phase.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Adande, G. R. & Ziurys, L. M., 2012, ApJ, 744, 194Google Scholar
Aikawa, Y., Wakelam, V., Hersant, F., Garrod, R., & Herbst, E., 2012, ApJ, 760, 40Google Scholar
Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2015, Science, 347, 1261952Google Scholar
Bacmann, A., Lefloch, B., Ceccarelli, C., Steinacker, J., Castets, A., Loinard, L., 2003, ApJ, 585, L55Google Scholar
Bergin, E. A. 2014. Astrobiology: An astronomer’s perspective. American Institute of Physics Conference Series 1638, 5-34Google Scholar
Bizzocchi, L., Caselli, P., Lenardo, E., & Dore, L., 2013, A&A, 555, 109Google Scholar
Brown, P. D. & Millar, T. J., 1989, MNRAS, 237, 661Google Scholar
Brünken, S., Sipilä, O., Chambers, E. T. et al., 2014, Nature, 516, 219Google Scholar
Caselli, P. & Ceccarelli, C., 2012, ARA&A, 20, 56Google Scholar
Cazaux, S., Caselli, P., & Spaans, M., 2011, ApJ, 741, L34Google Scholar
Ceccarelli, C., Caselli, P., Bockelée-Morvan, D., Mousis, O., Pizzarello, S., Robert, F., & Semenov, D. 2014, Protostars & Planets VI (Tucson: Univ. Arizona Press), 859Google Scholar
Ceccarelli, C. & Dominik, C., 2005, A&A, 440, 583Google Scholar
Chang, Q. & Herbst, E., 2014, ApJ, 787, 135Google Scholar
Charnley, S. B, Tielens, A. G. G. M, & Rodgers, S. D., 1997, ApJ, 482, 203Google Scholar
Cleeves, L. I., Bergin, E. A., Alexander, C. M. O., et al. 2014, Science, 345, 1590Google Scholar
Coutens, A., Jørgensen, J. K., Persson, M., et al. 2014, ApJL, 792, L5Google Scholar
Coutens, A., Vastel, C., Caux, E., et al. 2012, A&A, 539, 132Google Scholar
Crapsi, A., Caselli, P., Walmsley, C. M., et al. 2005, ApJ, 619, 379Google Scholar
Dalgarno, A., 2006, PNAS, 103, 12269Google Scholar
Daniel, F., Faure, A., Pagani, L., et al. 2016, A&A, 592, 45Google Scholar
Daniel, F., Gérin, M., Roueff, E., et al. 2013, A&A, 560, 3Google Scholar
Daranlot, J., Hincelin, U., Bergeat, A., et al. 2012, PNAS, 109, 10233Google Scholar
Dobbs, C. L., Krumholz, M. R., Ballesteros-Paredes, J., et al. 2014, Protostars & Planets VI, 3Google Scholar
Faure, A., Faure, M., Theulé, P., Quirico, E., & Schmitt, B., 2015, A&A, 584, A98Google Scholar
Faure, M., Quirico, E., Faure, A., et al. 2015, Icarus, 261, 14Google Scholar
Faure, A., Hily-Blant, P., Le Gal, R., Rist, C., & Pineau des Forê;ts, G., 2013, ApJ, 770, L2Google Scholar
Fedoseev, G., Ioppolo, S., & Linnartz, H., 2015, MNRAS, 446, 449Google Scholar
Flower, D. R., Pineau Des Forêts, G., & Walmsley, C. M., 2006, A&A, 449, 621Google Scholar
Furuya, K., Aikawa, Y., Hincelin, U., Hassel, G. E., Bergin, E. A., Vasyunin, A. I., & Herbst, E., 2015, A&A, 584, 124Google Scholar
Furuya, K., van Dishoeck, E. F., & Aikawa, Y., 2016, A&A, 586, 127Google Scholar
Furuya, K., Drozdovskaya, M. N., Visser, R., van Dishoeck, E. F., Walsh, C., Harsono, D., Hincelin, U., & Taquet, V., 2017, A&A, 599, 40Google Scholar
Furuya, K., & Aikawa, Y., 2018, ApJ, 857, 105Google Scholar
Furuya, K., & Persson, M. V., 2018, MNRAS, 476, 4994Google Scholar
Gerin, M., Marcelino, N., Biver, N., et al. 2009, A&A, 498, L9Google Scholar
Gerlich, D. J., 1990, Chem. Phys., 92, 2377Google Scholar
Gerlich, D., Herbst, E., & Roueff, E., 2002, Plan. Sp. Sci., 50, 1275Google Scholar
Hama, T., Watanabe, N., 2013, Chem. Rev., 113, 8783Google Scholar
Hama, T., Kuwahata, K., Watanabe, N., et al. 2012, ApJ, 757, 185Google Scholar
Harju, J., Sipilä, O., Brünken, S., et al. 2017, ApJ, 840, 63Google Scholar
Hasegawa, T. I. & Herbst, E., 1993, MNRAS, 263, 589Google Scholar
Heays, A. N., Visser, R., Gredel, R., et al. 2014, A&A, 562, 61Google Scholar
Herbst, E. & Klemperer, W., 1973, ApJ, 185, 505Google Scholar
Hidaka, H., Watanabe, M., Kouchi, A., & Watanabe, N., 2009, ApJ, 702, 291Google Scholar
Hily-Blant, P., Bonal, L., Faure, A., & Quirico, E., 2013, Icarus, 223, 582Google Scholar
Hily-Blant, P., Walmsley, M., Pineau des Forts, G., & Flower, D., 2010, A&A, 513, 41Google Scholar
Hincelin, U., Chang, Q., & Herbst, E., 2015, A&A, 574, 24Google Scholar
Honvault, P., Jorfi, M., González-Lezana, T., Faure, A., & Pagani, L., 2011, Phys. Rev. Lett., 107, 023201Google Scholar
Hugo, E., Asvany, O., & Schlemmer, S., 2009, J. Chem. Phys., 130, 164302Google Scholar
Inutsuka, S.-I., Inoue, T., Iwasaki, K., & Hosokawa, T., 2015, A&A, 580, A49Google Scholar
Jørgensen, J. K. & van Dishoeck, E. F., 2010, ApJ, 725, L172Google Scholar
Kalvans, J., Shmeld, I., Kalnin, J. R., Hocuk, S. 2017 MNRAS, 467, 1763Google Scholar
Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipilä, O., 2015, ApJ, 804, 98Google Scholar
Knauth, D. C., Andersson, B.-G., McCandliss, S. R., & Warren Moos, H., 2004, Nature, 429, 636Google Scholar
Lamberts, T., Ioppolo, S., Cuppen, H. M., Fedoseev, G., & Linnartz, H., 2015, MNRAS, 448, 3820Google Scholar
Langer, W. D., Graedel, T. E., Frerking, M. A., & Armentrout, P. B., 1984, ApJ, 277, 581Google Scholar
Le Bourlot, J., 1991, A&A, 242, 235Google Scholar
Le Gal, R., Hily-Blant, P., Faure, A., et al. 2014, A&A, 562, 83Google Scholar
Lepp, S., Dalgarno, A., & Sternberg, A., 1987, ApJ, 321, 383Google Scholar
Liang, M.-C., Heays, A. N., Lewis, B. R., Gibson, S. T., & Yung, Y. L., 2007, ApJ, 664, L115Google Scholar
Linnartz, H., Ioppolo, S., Fedoseev, G., 2015, Int. Rev. Phys. Chem., 34, 205Google Scholar
Linsky, J. L., 2003, Space Sci. Rev., 106, 49Google Scholar
Maret, S., Bergin, E. A., & Lada, C. J., 2006, Nature, 442, 425Google Scholar
Milam, S. N. & Charnley, S. B. 2012, in Lunar and Planetary Inst. Technical Report, Vol. 43, Lunar and Planetary Institute Science Conference Abstracts, 2618Google Scholar
Millar, T. J., Bennet, A., & Herbst, E., 1989, ApJ, 340, 906Google Scholar
Mumma, M. J. & Charnley, S. B., 2011, ARA&A, 49, 471Google Scholar
Nagaoka, A., Watanabe, N., & Kouchi, A., 2005, ApJ, 624, L29Google Scholar
Oba, Y., Watanabe, N., Hama, T., et al. 2012, ApJ, 749, 67Google Scholar
Oba, Y., Chigai, T., Osamura, Y., Watanabe, N., Kouchi, A., 2014, Meteor. Planet. Sci., 49, 117Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., et al. 2011, ApJ, 740, 109Google Scholar
Pagani, L., Wannier, P. G., Frerking, M. A., et al. 1992, A&A, 258, 472Google Scholar
Pagani, L., Vastel, C., Hugo, E., et al. 2009, A&A, 494, 623Google Scholar
Pagani, L., Roueff, E., & Lesaffre, P., 2011, A&A, 739, L35Google Scholar
Parise, B., Ceccarelli, C., Tielens, A. G. G. M., et al. 2006, A&A, 453, 949Google Scholar
Persson, M. V., Jørgensen, J. K., & van Dishoeck, E. F., 2013, A&A, 549, L3Google Scholar
Persson, M. V., Jørgensen, J. K., van Dishoeck, E., & Harsono, D., 2014, ApJ, 563, 74Google Scholar
Pontoppidan, K. M., 2006, A&A, 453, L47Google Scholar
Ratajczak, A., Quirico, E., Faure, A., Schmitt, B., & Ceccarelli, C., 2009, A&A, 496, L21Google Scholar
Ratajczak, A., Taquet, V., Kahane, C., et al. 2011, A&A, 528, L13Google Scholar
Ritchey, A. M., Federman, S. R., & Lambert, D. L., 2015, ApJL, 804, L3Google Scholar
Roberts, H., Herbst, E., & Millar, T. J., 2003, ApJ, 591, L41Google Scholar
Rodgers, S. D. & Charnley, S. B., 2002, Planet. Space Sci., 50, 1125Google Scholar
Rodgers, S. D. & Charnley, S. B., 2008, ApJ, 689, 1448Google Scholar
Roueff, E., Gerin, M., Lis, D. C., et al. 2013, Journal of Physical Chemistry A, 117, 9959Google Scholar
Roueff, E., Loison, J. C., & Hickson, K. M., 2015, A&A, 576, 99Google Scholar
Roueff, E., Lis, D. C., van der Tak, F. F. S., Gerin, M., & Goldsmith, P. F., 2005, A&A, 438, 585Google Scholar
Taquet, V., Ceccarelli, C., & Kahane, C., 2012, ApJ, 748, L3Google Scholar
Taquet, V., Charnley, S. B., & Sipilä, O., 2014, ApJ, 791, 1Google Scholar
Taquet, V., Peters, P. S., Kahane, C., et al. 2013, A&A, 550, 127Google Scholar
Terzieva, R. & Herbst, E., 2000, MNRAS, 317, 563Google Scholar
Tielens, A. G. G. M., 1983, A&A, 119, 177Google Scholar
Ueta, H., Watanabe, N., Hama, T., & Kouchi, A., 2016, Phys. Rev. Lett., 116, 253201Google Scholar
van Dishoeck, E. F. & Black, J. H., 1986, ApJS, 62, 109Google Scholar
Vastel, C., Phillips, T. G., & Yoshida, H., 2004, ApJ, 606, L127Google Scholar
Vasyunin, A. I. & Herbst, E., 2013, ApJ, 762, 86Google Scholar
Viala, Y. P., 1986, A&AS, 64, 391Google Scholar
Vidali, G., 2013, ChRv, 113, 8752Google Scholar
Wakelam, V., Vastel, C., Aikawa, Y., et al. 2014, MNRAS, 445, 2854Google Scholar
Walmsley, C. M., Flower, D. R., & Pineau Des Forêts, G., 2004, A&A, 418, 1035Google Scholar
Watanabe, N. & Kouchi, A., 2008, Prog. Surf. Sci., 83, 439Google Scholar
Watanabe, N., Kimura, Y., Kouchi, A., Chigai, T., Hama, T., & Pirronello, V., 2010, ApJ, 714, L233Google Scholar
Watson, W. D., 1973, ApJL, 183, L17Google Scholar
Watson, W. D., 1976, Reviews of Modern Physics, 48, 513Google Scholar
Willacy, K., Alexander, C., Ali-Dib, M., et al. 2015, SSRv, 197, 151Google Scholar
Wilson, T. L., 1999, Reports on Progress in Physics, 62, 143Google Scholar
Wirström, E. S., Charnley, S. B., Cordiner, M. A., & Milam, S. N., 2012, ApJ, 757, L11Google Scholar
Yıldız, U. A., Acharyya, K., Goldsmith, P. F. et al., 2013, A&A, 558, 58Google Scholar