Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T18:01:52.550Z Has data issue: false hasContentIssue false

Jet production efficiency in the sample of the youngest radio galaxies

Published online by Cambridge University Press:  07 April 2020

Anna Wójtowicz
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
Łukasz Stawarz
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
Emily Kosmaczewski
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the sample of 16 the youngest radio galaxies with measured kinematic ages and available X-ray data from high-resolution Chandra or XMM-Newton observations. We characterize the accretion properties and derive the jet kinetic luminosities for our sources. We found high accretion rates (>1% Eddington) and very high jet production efficiency for all the sources from our sample.This, along with the fact that the analyzed objects seem over-luminous in radio on the fundamental plane for the black hole activity, implies also that the radiative efficiency of the compact lobes is much higher than in the case of the evolved radio galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363CrossRefGoogle Scholar
Merloni, A., Heinz, S., & di Matteo, T. 2003, MNRAS, 345, 1057CrossRefGoogle Scholar
Netzer, H. 2009, MNRAS, 399, 1907CrossRefGoogle Scholar
Rusinek, K., Sikora, M., Kozie l-Wierzbowska, D., & Godfrey, L. 2017, MNRAS, 466, 2294CrossRefGoogle Scholar
Siemiginowska, A., Sobolewska, M., Migliori, G., et al. 2016, ApJ, 823, 57CrossRefGoogle Scholar
Son, D., Woo, J.-H., Kim, S. C., et al. 2012, ApJ, 757, 140CrossRefGoogle Scholar
Stawarz, L., Ostorero, L., Begelman, M. C., et al. 2008, ApJ, 680, 911925CrossRefGoogle Scholar
Willett, K. W., Stocke, J. T., Darling, J., & Perlman, E. S. 2010, ApJ, 713, 1393CrossRefGoogle Scholar
Willott, C. J., Rawlings, S., Blundell, K. M., & Lacy, M. 1999, MNRAS, 309, 1017CrossRefGoogle Scholar
Wu, Q. 2009, ApJL, 701, L95CrossRefGoogle Scholar
Trichas, M., Green, P. J., Constantin, A., et al. 2013, ApJ, 778, 188CrossRefGoogle Scholar
Tadhunter, C. 2016, Astronomische Nachrichten, 337, 159CrossRefGoogle Scholar