Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T06:19:38.306Z Has data issue: false hasContentIssue false

JWST observations of ALMA [O iii] 88 μm emitters in the epoch of reionization

Published online by Cambridge University Press:  13 February 2024

Takuya Hashimoto*
Affiliation:
Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571, Japan Tomonaga Center for the History of the Universe (TCHoU), Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding properties of galaxies in the epoch of reionization (EoR) is a frontier in the modern astronomy. ALMA observations have demonstrated that i) some [O iii] 88 μm emitters have matured stellar populations at z>6, implying early star formation activity at z>10, and that ii) high-z star-forming galaxies typically have very high [O iii] 88 μm-to-[C ii] 158 μm luminosity ratios ranging from 3 to 12 or higher, indicating interstellar media of high-z galaxies could be highly ionized. We discuss initial results of a medium-sized JWST GO1 program that targets a sample of 12 z=6–8 ALMA [O iii] 88 μm emitters with NIRCam and NIRSPec IFU modes (GO-1840). Our JWST GO1 program, in conjunction with ALMA data, will characterize the stellar, nebular, and dust properties of these [O iii] 88 μm emitters and place this galaxies in the context of reionization.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Binggeli, C., Zackrisson, E., Ma, X., et al. 2019, MNRAS, 489, 3827, doi: 10.1093/mnras/stz2387 CrossRefGoogle Scholar
Curtis-Lake, E., Carniani, S., Cameron, A., et al. 2022, arXiv e-prints, arXiv:2212.04568, doi: 10.48550/arXiv.2212.04568 CrossRefGoogle Scholar
Harikane, Y., Ouchi, M., Inoue, A. K., et al. 2020, ApJ, 896, 93, doi: 10.3847/1538-4357/ab94bd CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., et al. 2018, Nature, 557, 392, doi: 10.1038/s41586-018-0117-z CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019, PASJ, 71, 71, doi: 10.1093/pasj/psz049 CrossRefGoogle Scholar
Katz, H., Laporte, N., Ellis, R. S., Devriendt, J., & Slyz, A. 2019, MNRAS, 484, 4054, doi: 10.1093/mnras/stz281 CrossRefGoogle Scholar
Laporte, N., Streblyanska, A., Clement, B., et al. 2014, A&A, 562, L8, doi: 10.1051/0004-6361/201323179 CrossRefGoogle Scholar
Morishita, T., Roberts-Borsani, G., Treu, T., et al. 2022, arXiv e-prints, arXiv:2211.09097, doi: 10.48550/arXiv.2211.09097 CrossRefGoogle Scholar
Nakazato, Y., Yoshida, N., & Ceverino, D. 2023, arXiv e-prints, arXiv:2301.02416, doi: 10.48550/arXiv.2301.02416 CrossRefGoogle Scholar