Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T04:14:52.371Z Has data issue: false hasContentIssue false

Kiloparsec-scale jet-driven feedback in AGN probed by highly ionized gas: A MUSE/VLT perspective

Published online by Cambridge University Press:  29 March 2021

A. Rodríguez-Ardila
Affiliation:
Laboratório Nacional de Astrofísica, R. dos Estados Unidos, CEP 37504-364, Itajubá - MG, Brazil email: aardila@lna.br Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, CEP 12227-010, São José dos Campos - SP, Brazil
M. A. Fonseca-Faria
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, CEP 12227-010, São José dos Campos - SP, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to the superb field of view and sensitivity of MUSE, we found that the HIG, traced by the coronal line [Fe vii] λ6089, extends to scales not seen before, from 700 pc in Circinus and up to ∼2 kpc in NGC 5728 and NGC 3393. The gas morphology is complex, following closely the radio jet and the X-ray emission. Emission line ratios suggest gas excitation by shocks produced by the passage of the radio jet. This scenario is further supported by the physical conditions derived for the HIG, stressing the importance of the mechanical feedback in AGN with low-power radio jets.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000 CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., Mathis, J. S., et al. 1989, ApJ, 345, 245 CrossRefGoogle Scholar
Cid-Fernandes, R., Mateus, A., Sodré, L., et al. 2005, MNRAS, 358, 363 CrossRefGoogle Scholar
Contini, M. & Viegas, S. M. 2001, Apj, 132, 211 Google Scholar
Elmouttie, M., Koribalski, B., Gordon, S., et al. 1998, MNRAS, 297, 49 CrossRefGoogle Scholar
Ferguson, K., Korista, T., Ferland, G. 1997, ApJS, 110, 287 CrossRefGoogle Scholar
Jarvis, M. E., Harrison, C. M., Thomson, A. P., et al. 2019, MNRAS, 485, 2710 CrossRefGoogle Scholar
Greene, J. E., Zakamska, N. L., Ho, L. C., et al. 2011, ApJ, 732, 9 CrossRefGoogle Scholar
May, D., Rodrguez-Ardila, A., Prieto, M. A., et al. 2018, MNRAS, 481, L105 CrossRefGoogle Scholar
Mingozzi, M., Cresci, G., Venturi, G., et al. 2019, A&A, 622, A146 Google Scholar
Moorwood, A. F. M., Lutz, D., Oliva, E., et al. 1996, A&A, 315, L109 Google Scholar
Müller-Sánchez, F., Davies, R. I., Eisenhauer, F., et al. 2006, A&A, 454, 481 Google Scholar
Oliva, E., Marconi, A., Moorwood, A. F. M. 1999, A&A, 342, 87 Google Scholar
Prieto, M. A., Marco, O., Gallimore, J. 2005, MNRAS, 346, L28 CrossRefGoogle Scholar
Rodrguez-Ardila, A., Prieto, M. A., Viegas, S., et al. 2006, ApJ, 6Google Scholar
Rodrguez-Ardila, A., Prieto, M. A., Mazzalay, X., et al. 2017, MNRAS, 470, 2845 CrossRefGoogle Scholar
Rodrguez-Ardila, A. & Fonseca-Faria, M. A. 2020, ApJ, 895, L9 CrossRefGoogle Scholar
Sridhar, S. S., Morganti, R., Nyland, K., et al. 2020, A&A, 634A, 108 Google Scholar
Smith, D. A. & Wilson, A. S. 2001, ApJ, 557, 180 CrossRefGoogle Scholar
Wylezalek, D. & Morganti, R. 2018, Nature Astronomy, 2, 181 CrossRefGoogle Scholar