Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T00:16:49.787Z Has data issue: false hasContentIssue false

Kinematics of OB-associations in the 3-kpc solar neighborhood

Published online by Cambridge University Press:  13 January 2020

Anna M. Melnik
Affiliation:
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119991, Russia email: anna@sai.msu.ru
Andrei K. Dambis
Affiliation:
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119991, Russia email: anna@sai.msu.ru Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, 119991, Russia
Elena V. Glushkova
Affiliation:
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119991, Russia email: anna@sai.msu.ru Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, 119991, Russia
Pertti Rautiainen
Affiliation:
Astronomy Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulun yliopisto, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use Gaia (DR1, DR2) stellar proper motions to study the kinematics of OB-associations. The average one-dimensional velocity dispersion inside 18 OB-associations with more than 10 Gaia DR1 stars is σv = 3.9 km s−1. The median virial and stellar masses of OB-associations are equal to 7×105 and 9 × 103 solar masses, respectively. The median star-formation efficiency is ε = 2.1%. We have found the expansion in several OB-associations. Models of the Galaxy with a two-component outer ring R1R2 can reproduce the average residual velocities of OB-associations in the Perseus, Sagittarius and Local System complexes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Blaha, C., Humphreys, R. M. 1989, AJ, 98, 1598 10.1086/115244CrossRefGoogle Scholar
Brown, A. G. A., Vallenari, A., Prusti, T. et al. 2018, A&A, 616, A1, Gaia DR2Google Scholar
Dias, W. S., Alessi, B. S., Moitinho, A., Lépine, J. R. D. 2002, A&A, 389, 871 Google Scholar
Efremov, Yu. N., Sitnik, T. G. 1988, Soviet Astron. Lett., 14, 347 Google Scholar
Evans, N. J., Dunham, M. M., Jorgensen, J. K. et al. 2009, ApJS, 181, 321 CrossRefGoogle Scholar
Collaboration, Gaia et al. 2016, A&A, 595, A1 Google Scholar
Collaboration, Gaia, et al. 2016 A&A, 595, A2 Google Scholar
Garcia, P., Bronfman, L., Nyman, L.-A., Dame, T. M., Luna, A. 2014, ApJS, 212, 2 CrossRefGoogle Scholar
Hills, J. G. 1980, ApJ, 225, 986 CrossRefGoogle Scholar
Kroupa, P. 2002, Science, 295, 82 10.1126/science.1067524CrossRefGoogle Scholar
Kroupa, P., Aarseth, S., Hurley, J. 2001, MNRAS, 321, 699 CrossRefGoogle Scholar
Krumholz, M. R., Matzner, C. D., McKee, C. F. 2006, ApJ, 653, 361 10.1086/508679CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 809 CrossRefGoogle Scholar
Lindegren, L., Hernández, J., Bombrun, A. et al. 2018, A&A, 616, A2, Gaia DR2Google Scholar
Melnik, A. M. 2019, 485, 2106 CrossRefGoogle Scholar
Melnik, A. M., Dambis, A. K. 2017, MNRAS, 472, 3887 10.1093/mnras/stx2225CrossRefGoogle Scholar
Melnik, A. M., Dambis, A. K. 2018, submitted to MNRAS Google Scholar
Melnik, A. M., Rautiainen, P. 2009, Astron. Lett., 35, 609 CrossRefGoogle Scholar
Melnik, A. M., Rautiainen, P. 2011, MNRAS, 418, 2508 CrossRefGoogle Scholar
Melnik, A. M., Rautiainen, P., Glushkova, E.V., Dambis, A. K. 2016, Ap&SS, 361, 60 Google Scholar
Michalik, D., Lindegren, L., Hobbs, D. 2015, A&A, 574, 115 Google Scholar
Myers, P. C., Dame, T. M., Thaddeus, P. et al., 1986, ApJ, 301, 398 CrossRefGoogle Scholar
Rautiainen, P., Melnik, A. M. 2010, A&A 519, 70 Google Scholar
Sanders, D. B, Scoville, N. Z., Solomon, P. M. 1985, ApJ, 289, 373 CrossRefGoogle Scholar