Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T06:37:30.440Z Has data issue: false hasContentIssue false

LAE Galaxies at High Redshift: Formation Sites for Low-Metal Globular Clusters

Published online by Cambridge University Press:  05 March 2015

Bruce G. Elmegreen
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY, USA email: bge@us.ibm.com
Sangeeta Malhotra
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
James Rhoads
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lyman-α emitting (LAE) galaxies observed at intermediate to high redshift have the correct size, mass, star formation rate, metallicity, and space density to have been the formation sites of metal-poor globular clusters. LAEs are typically small galaxies with transient starbursts. They should accrete onto spiral and elliptical galaxies over time, delivering metal-poor clusters into the larger galaxies' halos as they themselves get dispersed by tidal forces. The galaxy WLM is a good example of a dwarf remnant from a very early starburst that contains a metal-poor globular cluster but failed to get incorporated into the Milky Way or M31 because of its remote location in the local group.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bekki, K. & Norris, J. E. 2006, ApJL, 637, 109Google Scholar
Blanc, G. A., et al. 2011, ApJ, 736, 31CrossRefGoogle Scholar
Carretta, E.et al. 2010, ApJ, 714, L7CrossRefGoogle Scholar
Chies-Santos, A. L., et al. 2011, A&A, 525, A20Google Scholar
Dolphin, A. E. 2000, ApJ, 531, 804CrossRefGoogle Scholar
Elmegreen, B. G., Malhotra, S., & Rhoads, J. 2012, ApJ, 757, 9CrossRefGoogle Scholar
Finkelstein, S. L., et al. 2011, ApJ, 729, 140CrossRefGoogle Scholar
Hodge, P. W., Dolphin, A. E., Smith, T. R., & Mateo, M. 1999, ApJ, 521, 577CrossRefGoogle Scholar
Leaman, R., et al. 2012, ApJ, 750, 33CrossRefGoogle Scholar
Mackey, A. D., et al. 2010, ApJ, 717, L11CrossRefGoogle Scholar
Malhotra, S. & Rhoads, J. E. 2004, ApJL, 617, 5CrossRefGoogle Scholar
Mannucci, F.et al. 2009, MNRAS, 398, 1915CrossRefGoogle Scholar
Romanowsky, A. J.et al. 2012, ApJ, 748, 29Google Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Zhang, H.-X., Hunter, D. A., Elmegreen, B. G., Gao, Y., & Schruba, A. 2012, AJ, 143, 47Google Scholar
Zheng, Z.-Y.et al. 2012, ApJ, 746, 28Google Scholar
Zinnecker, H., Keable, C. J., Dunlop, J. S., Cannon, R. D., & Griffiths, W. K. 1988, IAUS 126, 603Google Scholar