Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T05:32:12.430Z Has data issue: false hasContentIssue false

Large-scale structure studies with AGN in the eROSITA/SRG All-Sky Survey

Published online by Cambridge University Press:  25 July 2014

Alexander Kolodzig
Affiliation:
Max-Planck-Institut für Astrophysik (MPA), Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany, alex@mpa-garching.mpg.de
Marat Gilfanov
Affiliation:
Max-Planck-Institut für Astrophysik (MPA), Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany, alex@mpa-garching.mpg.de Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117997Russia
Gert Hütsi
Affiliation:
Max-Planck-Institut für Astrophysik (MPA), Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany, alex@mpa-garching.mpg.de Tartu Observatory, Tõravere 61602, Estonia
Rashid Sunyaev
Affiliation:
Max-Planck-Institut für Astrophysik (MPA), Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany, alex@mpa-garching.mpg.de Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow, 117997Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The four-year X-ray all-sky survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma satellite will detect ~ 3 million active galactic nuclei (AGN) with a median redshift of z≈1. We show that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure research. For the first time with a sample of X-ray selected AGN, it will become possible to perform detailed redshift- and luminosity-resolved studies of the linear bias factor, and to convincingly detected baryonic acoustic oscillations (BAOs). To exploit the full potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alexander, D. M. & Hickox, R. C. 2012, New A Rev., 56, 93CrossRefGoogle Scholar
Allevato, V., Finoguenov, A., Cappelluti, N., et al. 2011, ApJ, 736, 99Google Scholar
Allevato, V., Finoguenov, A., Hasinger, G., et al. 2012, ApJ, 758, 47Google Scholar
Anderson, L., Aubourg, E., Bailey, S., et al. 2012, MNRAS, 427, 3435Google Scholar
Brandt, W. N. & Hasinger, G. 2005, ARA&A, 43, 827Google Scholar
Cappelluti, N., Allevato, V., & Finoguenov, A. 2012, Advances in Astronomy, id. 853701Google Scholar
Cole, S., Percival, W. J., Peacock, J. A., et al. 2005, MNRAS, 362, 505Google Scholar
Comparat, J., Kneib, J.-P., Escoffier, S., et al. 2013, MNRAS, 428, 1498CrossRefGoogle Scholar
Eisenstein, D. J. & Hu, W. 1998, ApJ, 496, 605Google Scholar
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560Google Scholar
Fanidakis, N., Georgakakis, A., Mountrichas, G., et al. 2013, MNRAS, 435, 679CrossRefGoogle Scholar
Hütsi, G. 2006, A&A, 449, 891Google Scholar
Hütsi, G., Gilfanov, M., Kolodzig, A., & Sunyaev, R. 2014, eprint arXiv:1403.5555Google Scholar
Hütsi, G., Gilfanov, M., & Sunyaev, R. 2012, A&A, 547, A21Google Scholar
Kolodzig, A., Gilfanov, M., Hütsi, G., & Sunyaev, R. 2013a, A&A, 558, A90Google Scholar
Kolodzig, A., Gilfanov, M., Sunyaev, R., Sazonov, S., & Brusa, M. 2013b, A&A, 558, A89Google Scholar
Koutoulidis, L., Plionis, M., Georgantopoulos, I., & Fanidakis, N. 2013, MNRAS, 428, 1382Google Scholar
Krumpe, M., Miyaji, T., & Coil, A. L. 2010, ApJ, 713, 558Google Scholar
Krumpe, M., Miyaji, T., & Coil, A. L. 2013, ArXiv e-prints, 1308.5976Google Scholar
Krumpe, M., Miyaji, T., Coil, A. L., & Aceves, H. 2012, ApJ, 746, 1CrossRefGoogle Scholar
Miyaji, T., Krumpe, M., Coil, A. L., & Aceves, H. 2011, ApJ, 726, 83CrossRefGoogle Scholar
Mountrichas, G. & Georgakakis, A. 2012, MNRAS, 420, 514CrossRefGoogle Scholar
Mountrichas, G., Georgakakis, A., Finoguenov, A., et al. 2013, MNRAS, 430, 661Google Scholar
Peebles, P. J. E. & Yu, J. T. 1970, ApJ, 162, 815Google Scholar
Predehl, P., Andritschke, R., Böhringer, H., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7732, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference SeriesGoogle Scholar
Sawangwit, U., Shanks, T., Croom, S. M., et al. 2012, MNRAS, 420, 1916Google Scholar
Sunyaev, R. A. & Zeldovich, Y. B. 1970, Ap&SS, 7, 3Google Scholar
Tegmark, M., Eisenstein, D. J., Strauss, M. A., et al. 2006, Phys. Rev. D, 74, 123507Google Scholar
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2012, Physics Reports, 530, 87Google Scholar