Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T00:40:38.600Z Has data issue: false hasContentIssue false

Linear polarization of hydroxyl masers in circumstellar envelope outer regions

Published online by Cambridge University Press:  24 July 2012

P. Wolak
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland email: wolak@astro.uni.torun.pl
M. Szymczak
Affiliation:
Toruń Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland email: wolak@astro.uni.torun.pl
E. Gérard
Affiliation:
GEPI, UMR 8111, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A recent polarimetric survey of OH masers in a large sample of AGB and post-AGB stars revealed widespread occurrence of polarized features. We made a statistical analysis of the polarization properties of this large data set. We discuss the alignment of polarization position angles between the extreme blue- and red-shifted parts of the 1612 MHz spectrum. The average polarization angle of OH masers from the opposite sides of the envelope agrees within 20° for 80% of the sources in the sample. For two objects monitored over ~6 years the polarization position angle at 1612 MHz is constant within measurement uncertainties: this suggests a stable and a very regular structure of the circumstellar magnetic fields. Alternatively, this could indicate a galactic origin of the field which may be amplified by the stellar wind in the outermost parts of the envelopes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bains, I., Gledhill, T. M., Yates, J. A., & Richards, A. M. S. 2003, MNRAS, 338, 287CrossRefGoogle Scholar
Bowers, P. F. & Johnston, K. J. 1990, ApJ, 354, 676CrossRefGoogle Scholar
Habing, H. J. 1996, APPR, 7, 97Google Scholar
Kemball, A. J. & Diamond, P. J. 1997, ApJ, 418, L111CrossRefGoogle Scholar
Norris, R. P., Booth, R. S., Diamond, P. J., et al. 1984, MNRAS, 208, 435Google Scholar
Olnon, F. M., Winnberg, A., Matthews, H. E., & Schultz, G. V. 1980, AAPS, 42, 1190Google Scholar
Reid, M. J., Muhleman, D. O., Moran, J. M., et al. 1977, ApJ, 214, 60CrossRefGoogle Scholar
Soker, N. 2006, PASP 118, 260SCrossRefGoogle Scholar
Szymczak, M., Cohen, R. J., & Richards, A. M. S. 1998, MNRAS, 297, 1151CrossRefGoogle Scholar
Szymczak, M., Cohen, R. J., & Richards, A. M. S. 2001, A&A, 371, 1012Google Scholar
Szymczak, M. & Gérard, E. 2004, A&A, 423, 209Google Scholar
Szymczak, M. & Gérard, E. 2005, A&A, 433, L29Google Scholar
van Driel, W., Pezzani, J., Gérard, E. 1996, in High Sensitivity Radio Astronomy, ed. Jackson, N., & Davis, R. J. (Cambridge Univ. Press), 229Google Scholar
Vlemmings, W. H. T., van Langevelde, H. J., & Diamond, P. J. 2005, A&A, 434, 1029Google Scholar
Vlemmings, W. H. T., Humphreys, E. M. L., & Franco-Hernández, R. 2011, ApJ, 728, 149CrossRefGoogle Scholar
Wolak, P., Szymczak, M., & Gérard, E. 2012, A&A, 537, A5Google Scholar
Zell, P. J. & Fix, J. D. 1991, ApJ, 369, 506CrossRefGoogle Scholar