Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T07:38:13.107Z Has data issue: false hasContentIssue false

Lorentz violation and gravity

Published online by Cambridge University Press:  06 January 2010

Quentin G. Bailey*
Affiliation:
Physics Department, Embry-Riddle Aeronautical University, 3700 Willow Creek Road, Prescott, AZ 86301, USA, email: baileyq@erau.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last decade, a variety of high-precision experiments have searched for miniscule violations of Lorentz symmetry. These searches are largely motivated by the possibility of uncovering experimental signatures from a fundamental unified theory. Experimental results are reported in the framework called the Standard-Model Extension (SME), which describes general Lorentz violation for each particle species in terms of its coefficients for Lorentz violation. Recently, the role of gravitational experiments in probing the SME has been explored in the literature. In this talk, I will summarize theoretical and experimental aspects of these works. I will also discuss recent lunar laser ranging and atom interferometer experiments, which place stringent constraints on gravity coefficients for Lorentz violation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Amelino-Camelia, G. et al. , 2005, AIP Conf. Proc., 758, 30Google Scholar
Bailey, Q. G. 2009, Phys. Rev. D, 80, 044004Google Scholar
Bailey, Q. G. & Kostelecký, V. A. 2006, Phys. Rev. D, 74, 045001Google Scholar
Battat, J. B. R., Chandler, J. F., & Stubbs, C. W. 2007, Phys. Rev. Lett., 99, 241103 (2007)CrossRefGoogle Scholar
Bertotti, B., Iess, L., & Tortura, P. 2003, Nature, 425, 374Google Scholar
Bluhm, R. 2006, Lect. Notes Phys., 702, 191Google Scholar
Chung, K. Y. et al. , 2009, Phys. Rev. D, 80, 016002Google Scholar
Colladay, D. & Kostelecký, V. A. 1997, Phys. Rev. D, 55, 6760Google Scholar
Colladay, D. & Kostelecký, V. A. 1998, Phys. Rev. D, 58, 11602Google Scholar
Iess, L. & Asmar, S. 2007, Int. J. Mod. Phys. D, 16, 2191Google Scholar
Kostelecký, V. A. (ed.) 2008, CPT and Lorentz Symmetry IV, (Singapore: World Scientific)Google Scholar
Kostelecký, V. A. 2004, Phys. Rev. D, 69, 105009Google Scholar
Kostelecký, V. A. & Mewes, M. 2002, Phys. Rev. D, 66, 056005CrossRefGoogle Scholar
Kostelecký, V. A. & Potting, R. 1995, Phys. Rev. D, 51, 3923Google Scholar
Kostelecký, V. A. & Russell, N. 2009, arXiv:0801.0287Google Scholar
Kostelecký, V. A. & Tasson, J. D. 2009, Phys. Rev. Lett., 102, 010402Google Scholar
Kramer, M. 2009, this proceedings, 366Google Scholar
Müller, H. et al. , 2008, Phys. Rev. Lett., 100, 031101CrossRefGoogle Scholar
Murphy, T. W. et al. , 2008, PASP, 120, 20Google Scholar
Nobili, A. M. et al. , 2003, Phys. Lett. A, 318, 172Google Scholar
Schlamminger, S. et al. , 2008, Phys. Rev. Lett., 100, 041101CrossRefGoogle Scholar
Stairs, I. H. 2009, this proceedings, 218Google Scholar
Will, C. M. 2005, Living Rev. Relativity, 9, 3CrossRefGoogle Scholar
Wolf, P. et al. 2009, Exper. Astron., 23 (2), 651Google Scholar