Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T11:57:10.688Z Has data issue: false hasContentIssue false

Magnetic energy release: flares and coronal mass ejections

Published online by Cambridge University Press:  26 February 2010

Cristina H. Mandrini*
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67, Suc 28, 1428 Buenos Aires, Argentina e-mail: mandrini@iafe.uba.ar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Free energy stored in the magnetic field is the source that powers solar and stellar activity at all temporal and spatial scales. The energy released during transient atmospheric events is contained in current-carrying magnetic fields that have emerged twisted and may be further stressed via motions in the lower atmospheric layers (i.e. loop-footpoint motions). Magnetic reconnection is thought to be the mechanism through which the stored magnetic energy is transformed into kinetic energy of accelerated particles and mass flows, and radiative energy along the whole electromagnetic spectrum. This mechanism works efficiently at scale lengths much below the spatial resolution of even the highest resolution solar instruments; however, it may imply a large-scale restructuring of the magnetic field inferred indirectly from the combined analysis of observations and models of the magnetic field topology. The aftermath of magnetic energy release includes events ranging from nanoflares, which are below our detection limit, to powerful flares, which may be accompanied by the ejection of large amounts of plasma and magnetic field (so called coronal mass ejections, CMEs), depending on the amount of total available free magnetic energy, the magnetic flux density distribution, the magnetic field configuration, etc. We describe key observational signatures of flares and CMEs on the Sun, their magnetic field topology, and discuss how the combined analysis of solar and interplanetary observations can be used to constrain the flare/CME ejection mechanism.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Asai, A., Yokoyama, T., Shimojo, M., & Shibata, K. 2004, ApJ, 605, L77CrossRefGoogle Scholar
Attrill, G. D. R., Harra, L. K., van Driel-Gesztelyi, L., & Démoulin, P. 2007, ApJ, 656, L101CrossRefGoogle Scholar
Attrill, G., Nakwacki, M. S., & Harra, L. K., et al. 2006, Sol. Phys., 238, 117CrossRefGoogle Scholar
Aulanier, G., et al. 2007, Science, 318, 1588CrossRefGoogle Scholar
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., & Golub, L. 2000, ApJ, 540, 1126CrossRefGoogle Scholar
Aulanier, G., Démoulin, P., Schmieder, B., Fang, C. & Tang, Y. H. 1998, A&A, 183, 369Google Scholar
Aulanier, G., Pariat, E., & Démoulin, P. 2005, A&A, 444, 961Google Scholar
Aulanier, G., Pariat, E., Démoulin, P., & Devore, C. R. 2006, Sol. Phys., 238, 347CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485CrossRefGoogle Scholar
Aschwanden, M. J., Poland, A. I., & Rabin, D. M. 2001, Ann. Rev. Astron. Astrophys., 39, 175CrossRefGoogle Scholar
Bagalá, L. G., Mandrini, C. H., Rovira, M. G., & Démoulin, P. 2000, A&A, 363, 779Google Scholar
Baker, D., van Driel-Gesztelyi, L., Mandrini, C. H., Démoulin, P., et al. 2009, ApJ, 705, 926CrossRefGoogle Scholar
Benz, A. O. 2008, Liv. Rev. Sol. Phys., 5, 1Google Scholar
Brown, D. S., Nightingale, R. W., Alexander, D., Schrijver, C. J., et al. 2003, Sol. Phys., 216, 79CrossRefGoogle Scholar
Carmichael, H. 1964, NASA SP, 50, 451Google Scholar
Czaykowska, A., de Pontieu, B., Alexander, D., & Rank, G. 1999, ApJ, 521, L75CrossRefGoogle Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., Luoni, M. L., et al. 2005, Adv. Spa. Res., 35, 711CrossRefGoogle Scholar
Démoulin, P. 2006, Adv. Spa. Res., 37, 1269CrossRefGoogle Scholar
Démoulin, P. 2007, Adv. Spa. Res., 39, 1367CrossRefGoogle Scholar
Démoulin, P., Bagalá, L. G., Mandrini, C. H., Hénoux, J. C., & Rovira, M. G. 1997, A&A, 325, 305Google Scholar
Démoulin, P. & Berger, M. A. 2003, Sol. Phys., 215, 203CrossRefGoogle Scholar
Démoulin, P., Hénoux, J. C., & Mandrini, C. H. 1994, A&A, 285, 1023Google Scholar
Démoulin, P., Hénoux, J. C., Priest, E. R., Mandrini, C. H. 1996, A&A, 308, 643Google Scholar
Démoulin, P., Mandrini, C. H., & van Driel-Gesztelyi, L., et al. 2002, A&A, 382, 650Google Scholar
Fan, Y. 2008, ApJ, 676, 680CrossRefGoogle Scholar
Fan, Y. & Gibson, S. E. 2003, ApJ, 589, L105CrossRefGoogle Scholar
Fan, Y. & Gibson, S. E. 2004, ApJ, 609, 1123CrossRefGoogle Scholar
Fan, Y. & Gibson, S. E. 2007, ApJ, 668, 1232CrossRefGoogle Scholar
Fletcher, L., López Fuentes, M. C., Mandrini, C. H., et al. 2001b, Solar Phys., 203, 255CrossRefGoogle Scholar
Fletcher, L., Metcalf, T. R., Alexander, D., Brown, D. S., & Ryder, L. A. 2001a, ApJ, 554, 451CrossRefGoogle Scholar
Forbes, T. G. 2000, JGR, 105, 23153CrossRefGoogle Scholar
Forbes, T. G. & Acton, L. W. 1996, ApJ, 459, 330CrossRefGoogle Scholar
Forbes, T. G. & Isenberg, P. A. 1991, ApJ, 373, 294CrossRefGoogle Scholar
Forbes, T. G., Linker, J. A., Chen, J., Cid, C., Kóta, J., et al. 2006, Spa. Scien. Rev., 123, 251CrossRefGoogle Scholar
Gaizauskas, V., Mandrini, C. H., Démoulin, P., Luoni, M. L., & Rovira, M. G. 1998, A&A 332, 353Google Scholar
Hara, H., Watanabe, T., Matsuzaki, K., & Harra, L. K., et al. 2008, PASJ, 60, 275CrossRefGoogle Scholar
Harra, L. K., Démoulin, P., Mandrini, C. H., Matthews, S. A., et al. 2005, A&A, 438, 1099Google Scholar
Harra, L. K. & Sterling, A. C. 2001, ApJ, 561, L215CrossRefGoogle Scholar
Hirayama, T. 1974, Sol. Phys., 34, 323CrossRefGoogle Scholar
Isenberg, P. A., Forbes, T. G., & Démoulin, P. 1993, ApJ, 417, 368CrossRefGoogle Scholar
Kliem, B., Titov, V. S., & Török, T. 2004, A&A, 413, L23Google Scholar
Kliem, B. & Torok, T. 2006, PRL, 96, 255002CrossRefGoogle Scholar
Klimchuk, J. A. 2001, in: Song, P., Singer, H. & Siscoe, G. (eds.), Geophys. Mon., 125, 143, AGUGoogle Scholar
Kopp, R. A. & Pneuman, G. W. 1976, Sol. Phys., 50, 85CrossRefGoogle Scholar
Leka, K. D., Canfield, R. C., McClymont, A. N., & van Driel-Gesztelyi, L. 1996, ApJ, 462, 547CrossRefGoogle Scholar
Lepping, R. P., Szabo, A., DeForest, C. E., & Thompson, B. J. 1997, ESA SP, 415, 163Google Scholar
Lin, J., Forbes, T. G., Isenberg, P. A., & Démoulin, P. 1998, ApJ, 504, 1006CrossRefGoogle Scholar
Lites, B. W. 2009, Spa. Sci. Rev., 144, 197CrossRefGoogle Scholar
López Fuentes, M. C., Demoulin, P., Mandrini, C. H., & van Driel-Gesztelyi, L. 2000, ApJ, 544, 540CrossRefGoogle Scholar
López Fuentes, M. C., Démoulin, P., Mandrini, C. H., et al. 2003, A&A, 397, 305Google Scholar
Longcope, D. W. 2005, Liv. Rev. Sol. Phys. 2, 7Google Scholar
Luoni, M. L., Mandrini, C. H., Cristiani, G. D., & Démoulin, P. 2007, Adv. Spa. Res., 39, 1382CrossRefGoogle Scholar
Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., et al. 2008, ApJ, 683, 1192CrossRefGoogle Scholar
Lynch, B. J., Antiochos, S. K., MacNeice, P. J., Zurbuchen, T. H., & Fisk, L. A. 2004, ApJ, 617, 589CrossRefGoogle Scholar
Manchester, W. IV, Gombosi, T., DeZeeuw, D., & Fan, Y. 2004, ApJ, 610, 588CrossRefGoogle Scholar
Mandrini, C. H., Démoulin, P., Hénoux, J.-C., & Machado, M. E. 1991, A&A 250, 541Google Scholar
Mandrini, C. H., Demoulin, P., Schmieder, B., Deluca, E. E., et al. 2006, Sol. Phys., 238, 293CrossRefGoogle Scholar
Mandrini, C. H., Démoulin, P., Schmieder, B., Deng, Y. Y., & Rudawy, P. 2002, A&A, 391, 317Google Scholar
Mandrini, C. H., Nakwacki, M. S., Attrill, G., et al. 2007, Sol. Phys., 244, 25CrossRefGoogle Scholar
Mandrini, C. H., Pohjolainen, S., Dasso, S., Green, L. M., et al. 2005, A&A, 434, 725Google Scholar
McClymont, A. N. & Fisher, G. H. 1989, in: Waite, J., Burch, J., & Moore, R. (eds.), Solar System Plasma Physics, 219, AGUGoogle Scholar
McKenzie, D. E. & Hudson, H. S. 1999, ApJ, 519, L93CrossRefGoogle Scholar
Masson, S., Pariat, E., Aulanier, G., & Schrijver, C. J. 2009, ApJ, 700, 559CrossRefGoogle Scholar
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. 1994, Nature, 371, 495CrossRefGoogle Scholar
Meunier, N. 2005, A&A, 443, 309Google Scholar
Mikic, Z. & Linker, J. A. 1994, ApJ, 430, 898CrossRefGoogle Scholar
Moreno-Insertis, F. & Emonet, T. 1996, ApJ, 472, L53CrossRefGoogle Scholar
Moore, R. L. & Roumeliotis, G. 1992, IAU Colloq. 133: Eruptive Solar Flares, 399, 69Google Scholar
Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, ApJ, 552, 833CrossRefGoogle Scholar
Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M. K., et al. 2004, A&A 614, 1099Google Scholar
Priest, E. R. & Démoulin, P. 1995, JGR, 100, 23443CrossRefGoogle Scholar
Qiu, J., Hu, Q., Howard, T. A., & Yurchyshyn, V. B. 2007, ApJ, 659, 758CrossRefGoogle Scholar
Schrijver, C. J. 2009, Adv. Spa. Res., 43, 739CrossRefGoogle Scholar
Schrijver, C. J., De Rosa, M. L., Metcalf, T., Barnes, G., et al. 2008, Astrophys. J., 675, 1637CrossRefGoogle Scholar
Schwenn, R. 2006, Liv. Rev. Sol. Phys., 3, 2Google Scholar
Shibata, K. 1998, Ap&SS, 264, 129Google Scholar
Sturrock, P. A. 1966, Nature, 211, 695CrossRefGoogle Scholar
Schüssler, M. 1979, A&A, 71, 79Google Scholar
Svestka, Z. 1976, Solar Flares, Springer-Verlag Berlin HeidelbergCrossRefGoogle Scholar
Titov, V. S., Priest, E. R., & Démoulin, P. 1993, A&A, 276, 564Google Scholar
Titov, V. S., Hornig, G., & Démoulin, P. 2002, JGR, 107, SSH 3, 113CrossRefGoogle Scholar
Török, T. & Kliem, B. 2003, A&A, 406, 1043Google Scholar
Török, T. & Kliem, B. 2005, ApJ, 630, L97CrossRefGoogle Scholar
Török, T., Kliem, B., & Titov, V. S. 2004, A&A, 413, L27Google Scholar
van Driel-Gesztelyi, L., Attrill, G., Démoulin, P., Mandrini, C., et al. 2008, An. Geo., 26, 3077CrossRefGoogle Scholar
Webb, D. F., Lepping, R. P., Burlaga, L. F., DeForest, C. E., et al. 2000, JGR, 105, 27251CrossRefGoogle Scholar
Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., & Newmark, J. 2001, ApJ, 546, L69CrossRefGoogle Scholar