Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:03:10.093Z Has data issue: false hasContentIssue false

Magnetic feature tracking, what determines the speed?

Published online by Cambridge University Press:  05 July 2012

Gustavo Guerrero
Affiliation:
Solar Physics, HEPL, Stanford University, Stanford, CA, 94305-4085, USA email: gag@stanford.edu NORDITA, Roslagstullsbacken 17, Stockholm, Sweden
Matthias Rheinhardt
Affiliation:
Department of Physics, FI-00014 University of Helsinki, Finland email: rheinhar@mappi.helsinki.fi NORDITA, Roslagstullsbacken 17, Stockholm, Sweden
Mausumi Dikpati
Affiliation:
High Altitude Observatory, NCAR, Boulder, CO, 80301, USA email: dikpati@ucar.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations revealed that small magnetic elements abundant at the solar surface move poleward with a velocity which seems to be lower than the plasma velocity U. Guerrero et al. (2011) explained this discrepancy as a consequence of diffusive spreading of the magnetic elements due to a positive radial gradient of |Uθ|. As the gradient's sign (inferred by local helioseismology) is still unclear, cases with a negative gradient are studied in this paper. Under this condition, the velocity of the magnetic tracers turns out to be larger than the plasma velocity, in disagreement with the observations. Alternative mechanisms for explaining them independently are proposed. For the turbulent magnetic pumping it is shown that it has to be unrealistically strong to reconcile the model with the observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Gonzáles Hernández, I., Komm, R., Hill, F., Howe, R., Corbard, T., & Haber, D. 2006, ApJ, 638, 576CrossRefGoogle Scholar
Guerrero, G., Rheinhardt, M., Brandenburg, A., & Dikpati, M. 2011, MNRAS Letters, in press, (arXiv:1107.4801)Google Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M. 2008, A&A, 485, 267Google Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science, 327, 1350CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., Ossendrijver, M., & Stix, M. 2006a, A&A, 455, 401Google Scholar
Komm, R. W., Howard, R. F., & Harvey, J. W. 1993, Solar Physics, 147, 207CrossRefGoogle Scholar
Ulrich, R. K. 2010, ApJ, 725, 658CrossRefGoogle Scholar
Zhao, J., Couvidat, S., Bogart, R. S., Parchevsky, K. V., Birch, A. C., Duvall, T. L., Beck, J. G., Kosovichev, A. G., & Scherrer, P. H. 2011, Solar Physics, pp 163–+Google Scholar