Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T22:42:53.041Z Has data issue: false hasContentIssue false

Magnetic Field Evolution in the Crust of Neutron Stars: Crust Failure and Plastic Flow

Published online by Cambridge University Press:  27 February 2023

Konstantinos N. Gourgouliatos*
Affiliation:
University of Patras, Department of Physics, Patras, 26504, Greece email: kngourg@upatras.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of the magnetic field in neutron star crusts because of the Hall effect has received significant attention over the last two decades, which is strongly justified because of the dominance of this effect in highly magnetised neutron stars. However, the applicability of the Hall effect is based on the assumption that the crust does not fail and sustains its rigidity. This assumption can be violated for substantially strong magnetic fields. If this is the case, the evolution of the magnetic field is described by a different set of equations, which include the effects of a non-rigid crust. In this talk, after a brief review of the main characteristic of the Hall evolution, I will discuss the impact a plastic flow of the crust has on the magnetic field, studying axisymmetric models. Moreover, the way the crust fails impacts the overall evolution, with major differences appearing if the failure is local, intermediate or global. Quite remarkably, crustal failure and plasticity do not annul the Hall effect, and under certain circumstances they may even lead to a more dramatic evolution. I will discuss the impact of these effects in the context of neutron star timing behaviour, with special focus on timing noise, outbursts and glitches.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Archibald, R. F., Kaspi, V. M., Ng, C. Y., Gourgouliatos, K. N., Tsang, D., Scholz, P., Beardmore, A. P., Gehrels, N., & Kennea, J. A. 2013, An anti-glitch in a magnetar. Nature, 497(7451), 591593.CrossRefGoogle Scholar
Beloborodov, A. M. 2009, Untwisting Magnetospheres of Neutron Stars. Astrophys. J., 703(1), 10441060.CrossRefGoogle Scholar
Braithwaite, J. & Spruit, H. C. 2004, A fossil origin for the magnetic field in A stars and white dwarfs. Nature, 431(7010), 819821.CrossRefGoogle Scholar
Chamel, N. & Haensel, P. 2008, Physics of Neutron Star Crusts. Living Reviews in Relativity, 11(1), 10.CrossRefGoogle ScholarPubMed
Chugunov, A. I. & Horowitz, C. J. 2010, Breaking stress of neutron star crust. Mon. Not. Roy. Astron. Soc., 407(1), L54L58.CrossRefGoogle Scholar
Coti Zelati, F., Rea, N., Pons, J. A., Campana, S., & Esposito, P. 2018, Systematic study of magnetar outbursts. Mon. Not. Roy. Astron. Soc., 474(1), 9611017.CrossRefGoogle Scholar
De Grandis, D., Turolla, R., Wood, T. S., Zane, S., Taverna, R., & Gourgouliatos, K. N. 2020, Three-dimensional Modeling of the Magnetothermal Evolution of Neutron Stars: Method and Test Cases. Astrophys. J., 903(1), 40.CrossRefGoogle Scholar
Dib, R., Kaspi, V. M., & Gavriil, F. P. 2008, Glitches in Anomalous X-Ray Pulsars. Astrophys. J., 673(2), 10441061.CrossRefGoogle Scholar
Douchin, F. & Haensel, P. 2001, A unified equation of state of dense matter and neutron star structure. Astron. Astrophys., 380, 151167.CrossRefGoogle Scholar
Giliberti, E., Cambiotti, G., Antonelli, M., & Pizzochero, P. M. 2020, Modelling strains and stresses in continuously stratified rotating neutron stars. Mon. Not. Roy. Astron. Soc., 491(1), 10641078.Google Scholar
Goldreich, P. & Reisenegger, A. 1992, Magnetic Field Decay in Isolated Neutron Stars. Astrophys. J., 395, 250.CrossRefGoogle Scholar
Gourgouliatos, K. N. & Cumming, A. 2014, Hall effect in neutron star crusts: evolution, endpoint and dependence on initial conditions. Mon. Not. Roy. Astron. Soc., 438(2), 16181629.CrossRefGoogle Scholar
Gourgouliatos, K. N., Cumming, A., Reisenegger, A., Armaza, C., Lyutikov, M., & Valdivia, J. A. 2013, Hall equilibria with toroidal and poloidal fields: application to neutron stars. Mon. Not. Roy. Astron. Soc., 434(3), 24802490.CrossRefGoogle Scholar
Gourgouliatos, K. N., De Grandis, D., & Igoshev, A. 2022, Magnetic field evolution in neutron star crusts: Beyond the hall effect. Symmetry, 14(1).CrossRefGoogle Scholar
Gourgouliatos, K. N. & Esposito, P. Strongly Magnetized Pulsars: Explosive Events and Evolution. In Rezzolla, L., Pizzochero, P., Jones, D. I., Rea, N., & Vidaña, I., editors, Astrophysics and Space Science Library 2018, volume 457 of Astrophysics and Space Science Library, 57.CrossRefGoogle Scholar
Gourgouliatos, K. N. & Hollerbach, R. 2016, Resistive tearing instability in electron MHD: application to neutron star crusts. Mon. Not. Roy. Astron. Soc., 463(3), 33813389.CrossRefGoogle Scholar
Gourgouliatos, K. N., Kondić, T., Lyutikov, M., & Hollerbach, R. 2015, Magnetar activity via the density-shear instability in Hall-MHD. Mon. Not. Roy. Astron. Soc., 453(1), L93L97.CrossRefGoogle Scholar
Gourgouliatos, K. N. & Lander, S. K. 2021, Axisymmetric magneto-plastic evolution of neutron-star crusts. Mon. Not. Roy. Astron. Soc., 506(3), 35783587.CrossRefGoogle Scholar
Igoshev, A. P., Hollerbach, R., Wood, T., & Gourgouliatos, K. N. 2021, Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars. Nature Astronomy, 5, 145149.CrossRefGoogle Scholar
Kaspi, V. M. & Beloborodov, A. M. 2017, Magnetars. Ann. Rev. Astron. Astroph., 55(1), 261301.CrossRefGoogle Scholar
Kojima, Y., Kisaka, S., & Fujisawa, K. 2021,a Evolution of magnetic deformation in neutron star crust. Mon. Not. Roy. Astron. Soc., 502a(2), 20972104.Google Scholar
Kojima, Y., Kisaka, S., & Fujisawa, K. 2021,b Magneto-elastic equilibrium of a neutron star crust. Mon. Not. Roy. Astron. Soc., 506b(3), 39363945.Google Scholar
Kojima, Y., Kisaka, S., & Fujisawa, K. 2022, Magnetic field sustained by the elastic force in neutron star crusts. arXiv e-prints, arXiv:2201.01881.Google Scholar
Kojima, Y. & Suzuki, K. 2020, Magnetic-field evolution with large-scale velocity circulation in a neutron-star crust. Mon. Not. Roy. Astron. Soc., 494(3), 37903798.CrossRefGoogle Scholar
Kuan, H.-J., Suvorov, A. G., & Kokkotas, K. D. 2021, General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars - I. Theoretical framework and crust breaking. Mon. Not. Roy. Astron. Soc., 506(2), 29852998.CrossRefGoogle Scholar
Lander, S. K. 2016, Magnetar Field Evolution and Crustal Plasticity. Astrophys. J. Lett., 824(2), L21.CrossRefGoogle Scholar
Lander, S. K., Andersson, N., Antonopoulou, D., & Watts, A. L. 2015, Magnetically driven crustquakes in neutron stars. Mon. Not. Roy. Astron. Soc., 449(2), 20472058.CrossRefGoogle Scholar
Lander, S. K. & Gourgouliatos, K. N. 2019, Magnetic-field evolution in a plastically failing neutron-star crust. Mon. Not. Roy. Astron. Soc., 486(3), 41304143.CrossRefGoogle Scholar
Palmer, D. M., Barthelmy, S., Gehrels, N., Kippen, R. M., Cayton, T., Kouveliotou, C., Eichler, D., Wijers, R. A. M. J., Woods, P. M., Granot, J., Lyubarsky, Y. E., Ramirez-Ruiz, E., Barbier, L., Chester, M., Cummings, J., Fenimore, E. E., Finger, M. H., Gaensler, B. M., Hullinger, D., Krimm, H., Markwardt, C. B., Nousek, J. A., Parsons, A., Patel, S., Sakamoto, T., Sato, G., Suzuki, M., & Tueller, J. 2005, A giant γ-ray flare from the magnetar SGR 1806-20. Nature, 434(7037), 11071109.CrossRefGoogle ScholarPubMed
Perna, R. & Pons, J. A. 2011, A Unified Model of the Magnetar and Radio Pulsar Bursting Phenomenology. Astrophys. J. Lett., 727(2), L51.CrossRefGoogle Scholar
Pons, J. A. & Geppert, U. 2007, Magnetic field dissipation in neutron star crusts: from magnetars to isolated neutron stars. Astron. Astrophys., 470(1), 303315.CrossRefGoogle Scholar
Pons, J. A. & Perna, R. 2011, Magnetars versus High Magnetic Field Pulsars: A Theoretical Interpretation of the Apparent Dichotomy. Astrophys. J., 741(2), 123.CrossRefGoogle Scholar
Rea, N. & Esposito, P. Magnetar outbursts: an observational review. In High-Energy Emission from Pulsars and their Systems 2011, volume 21 of Astrophysics and Space Science Proceedings, 247.CrossRefGoogle Scholar
Suvorov, A. G. & Kokkotas, K. D. 2019, Young magnetars with fracturing crusts as fast radio burst repeaters. Mon. Not. Roy. Astron. Soc., 488(4), 58875897.CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. 1995, The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts. Mon. Not. Roy. Astron. Soc., 275(2), 255300.CrossRefGoogle Scholar
Thompson, C., Yang, H., & Ortiz, N. 2017, Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts. Astrophys. J., 841(1), 54.CrossRefGoogle Scholar
Tsang, D. & Gourgouliatos, K. N. 2013, Timing Noise in Pulsars and Magnetars and the Magnetospheric Moment of Inertia. Astrophys. J. Lett., 773(1), L17.CrossRefGoogle Scholar
Turolla, R., Zane, S., & Watts, A. L. 2015, Magnetars: the physics behind observations. A review. Reports on Progress in Physics, 78(11), 116901.CrossRefGoogle ScholarPubMed
Viganò, D., Rea, N., Pons, J. A., Perna, R., Aguilera, D. N., & Miralles, J. A. 2013, Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. Roy. Astron. Soc., 434(1), 123141.CrossRefGoogle Scholar
Younes, G., Lander, S. K., Baring, M. G., Enoto, T., Kouveliotou, C., Wadiasingh, Z., Ho, W. C. G., Harding, A. K., Arzoumanian, Z., Gendreau, K., Güver, T., Hu, C.-P., Malacaria, C., Ray, P. S., & Strohmayer, T. E. 2022, Pulse Peak Migration during the Outburst Decay of the Magnetar SGR 1830-0645: Crustal Motion and Magnetospheric Untwisting. Astrophys. J. Lett., 924(2), L27.CrossRefGoogle Scholar