Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T22:39:36.544Z Has data issue: false hasContentIssue false

The magnetic field structure in the multi-source magnetized core NGC 2024 FIR 5

Published online by Cambridge University Press:  01 November 2008

Felipe de O. Alves
Affiliation:
Institut de Ciències de l'Espai (IEEC–CSIC), Bellaterra, Catalunya 08193, Spain email: oliveira@ieec.uab.es
J. M. Girart
Affiliation:
Institut de Ciències de l'Espai (IEEC–CSIC), Bellaterra, Catalunya 08193, Spain email: oliveira@ieec.uab.es
S.-P. Lai
Affiliation:
Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan email: slai@phys.nthu.edu.tw
R. Rao
Affiliation:
Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23–141, Taipei 10617, Taiwan email: rrao@sma.hawaii.edu
Q. Zhang
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA email: qzhang@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work reports high resolution SMA polarimetric observations toward NGC 2024 FIR 5, a magnetized core previously found to harbour protostars. Our 345 GHz data indicates the presence of an extended dust emission associated with the dense core where the protostars are embedded. The 3σ polarized intensity shows depolarization toward the peak of Stokes I emission. This diminishing polarized flux implies that the alignment efficiency of the core dust grains is low within higher column densities where grain properties are likely different. The derived magnetic field geometry exhibits pinched field lines which are typical in evolved supercritical clouds where the magnetic field no longer support the core from collapsing. As a consequence for protostars, the gravitational pulling along the disk's long axis makes an equatorial bend to the field lines that, in turn, results in a hourglass shape. The SMA field structure agrees perfectly with the BIMA map. However, models are still necessary to provide a complete description of the evolutionary scenario of FIR 5.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Elmegreen, B. G. & Scalo, J 2004, ARAA 42, 211CrossRefGoogle Scholar
Fiedler, R. A. & Mouschovias, T. Ch. 1993, ApJ 415, 680Google Scholar
Galli, D. & Shu, F. H. 1993, ApJ 417, 243CrossRefGoogle Scholar
Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science 313, 812CrossRefGoogle Scholar
Gonçalves, J., Galli, D., & Walmsley, M. 2005, A&A 430, 979Google Scholar
Gonçalves, J., Galli, D., & Girart, J. M. 2008, A&A 490, L39Google Scholar
Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJ 616, L1CrossRefGoogle Scholar
Kandori, R., Tamura, M., Kusakabe, N., Nakajima, Y., Nagayama, T., Nagashima, C., Hashimoto, J., Ishihara, A., Nagata, T., & Hough, J. H. 2007, PASJ 59, 487CrossRefGoogle Scholar
Lai, S.-P., Crutcher, R. M., Girart, J. M., & Rao, R. 2002, ApJ 566, 925CrossRefGoogle Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ 529, 477CrossRefGoogle Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics 76, 125Google Scholar
Marrone, D. P. & Rao, R. 2008, in Duncan, W. D., Holland, W. S., Withngton, S. & Zmuidzinas, J. (eds), Millimeter and Submillimeter Detectors and Instrumentation, SPIE 7020Google Scholar
Mezger, P. G., Chini, R., Kreysa, E., Wink, J. E., & Salter, C. J. 1988, A&A 191, 44Google Scholar
Mezger, P. G., Sievers, A. W., Haslam, C. G. T., Kreysa, E., Lemke, R., Mauersberger, R., & Wilson, T. L. 1992, A&A 256, 631Google Scholar
Mouschovias, T. C., Tassis, K., & Kunz, M. W. 2006, ApJ 646, 1043CrossRefGoogle Scholar
Reipurth, B., Rodríguez, L. F., Anglada, G., & Bally, J. 2002, AJ 124, 1045CrossRefGoogle Scholar
Richer, J. S., Hills, R. E., & Padman, R. 1992, MNRAS 254, 525CrossRefGoogle Scholar
Shu, F. H., Allen, A., Shang, H., Ostriker, E. C., & Li, Z. 1999, in: Lada, C. J. & Kylafis, N. D. (eds.), in The Origin of Stars and Planetary Systems, p.193Google Scholar
Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ 647, 382CrossRefGoogle Scholar
Tang, Y.-W., Ho, P. T. P., Girart, J. M., Rao, R., Koch, P. M., & Lai, S.-P. 2008, ApJ, submittedGoogle Scholar
Tassis, K. & Mouschovias, T. C. 2004, ApJ 616, 238CrossRefGoogle Scholar
Wiesemeyer, H., Güsten, R., Wink, J. E., & Yorke, H. W. 1997, A&A 320, 287Google Scholar