Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:43:37.889Z Has data issue: false hasContentIssue false

Magnetic Fields in Galaxies

Published online by Cambridge University Press:  12 August 2011

Ellen G. Zweibel*
Affiliation:
Departments of Astronomy & Physics, & Center for Magnetic Self-Organization, University of Wisconsin-Madison475 N. Charter St, Madison, Wisconsin 53706USA email: zweibel@astro.wisc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Ando, S. & Kusenko, A. 2010 ApJ, 722, L39CrossRefGoogle Scholar
Beck, R. 2009 Ast. & Sp. Sci. Trans, 5, 43Google Scholar
Bell, E. F. 2003 ApJ, 586, 794CrossRefGoogle Scholar
Bell, A. R. 2004 MNRAS, 353, 550CrossRefGoogle Scholar
Blackman, E. G. & Field, G. B 2001 Phys. Plasmas, 8, 2407CrossRefGoogle Scholar
Brandenburg, A. & Zweibel, E. G. 1994 ApJ 427, L91CrossRefGoogle Scholar
Brown, J. C., Haverkorn, M., Gaensler, B. M., Taylor, A. R., Bizunok, N. M., Dickey, J. M., & Green, A. J. 2007 ApJ, 663, 258CrossRefGoogle Scholar
Crutcher, R. M., Heiles, C. & Troland, T 2003 Turbulence & Magnetic Fields in Astrophysics, eds. Falgarone, E. & Passot, T., Lecture Notes in Physics, 614, 155CrossRefGoogle Scholar
Ferrière, K. M. 1993 ApJ, 404, 162CrossRefGoogle Scholar
Ferrire, K. M. 1993 ApJ, 409, 248CrossRefGoogle Scholar
Ferrière, K. M. & Schmitt, D. 2000 A&A 358, 125Google Scholar
Furlanetto, S. R. & Loeb, A. 2001 ApJ, 556, 619CrossRefGoogle Scholar
Gnedin, N. Y., Ferrara, A., & Zweibel, E. G. 2000 ApJ, 505, 516Google Scholar
Han, J. L. 2009 Cosmic Magnetic Fields: Proceedings of IAU Symposium 259, 455Google Scholar
Hanasz, M. & Lesch, H. 1993 A&A, 278, 561Google Scholar
Heitsch, F. & Zweibel, E. G. 2003 ApJ 583, 229CrossRefGoogle Scholar
Heitsch, F., Zweibel, E. G., Slyz, A., & Devriendt, J. E. G. 2004 ApJ, 603, 175CrossRefGoogle Scholar
Howard, A. M. & Kulsrud, R. M. 1997 ApJ, 483, 648CrossRefGoogle Scholar
Kowal, G., Otmianowska-Mazur, K., & Hanasz, M. 2006 A&A, 445, 915Google Scholar
Krolik, J.H. & Zweibel, E. G. 2006 ApJ, 644, 651CrossRefGoogle Scholar
Kronberg, P. P., Dufton, Q. W., Li, H., & Colgate, S. A 2001 ApJ, 560, 178CrossRefGoogle Scholar
Kulesza-Zydik, B., Kulpa-Dybel, K., Otmianowska-Mazur, K., Soida, M., & Urbanik, M. 2010 A&A, 522, 61Google Scholar
Kulsrud, R. M. & Anderson, S. W. 1992 ApJ, 396, 606CrossRefGoogle Scholar
Kulsrud, R. M., Cen, R., Ostriker, J. P., & Ryu, D. 1997 ApJ, 480, 481CrossRefGoogle Scholar
Kulsrud, R. M. & Zweibel, E. G. 2008 Rep. Prog. Phys, 71, 046901CrossRefGoogle Scholar
Lazarian, A. & Vishniac, E. T. 1999 ApJ, 517, 700CrossRefGoogle Scholar
Loureiro, N. F., Schekochihin, A., & Cowley, S. C. 2007 Phys. Plasmas, 14, 100703CrossRefGoogle Scholar
Mao, S. A., Gaensler, B. M., Haverkorn, M., Zweibel, E. G., Madsen, G. J., McClure-Griffiths, N. M., Shukurov, A., & Kronberg, P. P. 2010 ApJ, 714, 1170CrossRefGoogle Scholar
Neronov, A. & Vovk, I 2010 Science, 328, 73CrossRefGoogle Scholar
Oren, A. L. & Wolfe, A. M. 1995 ApJ, 425, 624CrossRefGoogle Scholar
Parizot, E. & Drury, L. 1999 A&A, 349, 673Google Scholar
Parker, E. N. 1966 ApJ, 145, 811CrossRefGoogle Scholar
Parker, E. N. 1971 ApJ, 166, 295CrossRefGoogle Scholar
Parker, E. N. 1992 ApJ, 401, 137CrossRefGoogle Scholar
Rees, M. J. 1987 QJRAS, 28, 197Google Scholar
Ryu, D., Kang, H., Cho, J., & Das, S. 2008 Science, 320, 909CrossRefGoogle Scholar
Tan, J. C. & Blackman, E. G. 2004 ApJ, 603, 401CrossRefGoogle Scholar
Taylor, A. R., Stil, J. M., Sunstrum, C. 2009 ApJ, 702, 1230CrossRefGoogle Scholar
Widrow, L. M. 2002 Rev. Mod. Phys., 74, 775CrossRefGoogle Scholar
Zweibel, E. G. 2003 ApJ, 587, 625CrossRefGoogle Scholar
Zweibel, E. G. & Heitsch, F. 2008 ApJ, 684, 373CrossRefGoogle Scholar
Zweibel, E. G. & Yamada, M 2009 ARAA 47, 291CrossRefGoogle Scholar