No CrossRef data available.
Article contents
Maser polarization simulation in an evolving star: effect of magnetic field on SiO maser in the circumstellar envelope
Published online by Cambridge University Press: 07 February 2024
Abstract
Maser polarization changes during a pulsation in the CSE of an AGB star are related in a complicated way to the magnetic field structure. 43 GHz SiO maser transitions are useful for polarization study because of their relatively simple Zeeman splitting structure and their location. This work uses 3D maser simulation to investigate the effect of the magnetic field on maser polarization with different directions. The results show that linear polarization depends on the magnetic direction while circular polarization is less significant. The EVPA changes through π/2 at an angle of around 50 degrees, approximately the Van Vleck angle. The EVPA rotation result from 3D maser simulation is consistent with results from 1D simulations, and may explain the 90 degree change of the EVPA within a single cloud in the observational cases of TX Cam and R Cas.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 18 , Symposium S380: Cosmic Masers: Proper Motion toward the Next-Generation Large Projects , December 2022 , pp. 435 - 439
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union